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It is easier to fecognize a masked speech when the speech and its masker are perceived as spatially
segregated. Usfng event-related potentials, this study examined how the early cortical representation
of speech is affected by different masker types and perceptual locations, when the listener is either
passively or agively listening to the target speech syllable. The results showed that the two-talker-
speech maskeflinduced a much larger masking effect on the N1/P2 complex than either the steady-
state-noise maffker or the amplitude-modulated speech-spectrum-noise masker did. Also, a switch from
the passive- tfl active-listening condition enhanced the N1/P2 complex only when the masker was
speech. Moreofer, under the active-listening condition, perceived separation between target and masker
enhanced the J1/P2 complex only when the masker was speech. Thus, when a masker is present, the
effect of selectfe attention to the target-speech signal on the early cortical representation of the speech
signal is maskd-type dependent.

RWv, &

Speech encoding
Speech recognition
Attention
Informational masking
Energetic masking
Event-related potentials
Perceptual separation
Precedence effect
Active listening
Passive listening

© 2014 Elsevier Inc. All rights reserved.

modulated by higher-level cognitive and attentional pigbcesses.
Wideband noises with or without amplitude modulations h§ve been
generally used as maskers that mainly produce energetic m
speech.

On the other hand, competing sound sources can al

1. Introduction
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Under noisy listening ; for a review see Schneider, Li, & cause
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Daneman, 2007). Energetic masking mainly occurs in the cochlea
when the signal sound wave physically interacts with the masker
sound wave in the same auditory filter, leading to a substantially
degraded or noisy representation of the signal at the peripheral
processing level. The effectiveness of energetic masking cannot be
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informational masking that interferes with the processi
signal in addition to energetic masking. For example, altRough a
speech masker induces energetic masking (due to the spedgh mas-
ker-elicited activities in the same or nearby regions on th{ basilar
membrane that are processing the target speech at the sanfe time),
processing of the information in the speech masker interfeffes with
processing of the target speech at both perceptual (e.g., plonemic
identification) and cognitive (e.g., semantic processingf levels,
making selective attention and segregation of target spedgh from
masking speech difficult for listeners. Thus, when the sfectrum
of the speech masker overlaps with that of the targetfspeech,
a speech masker can produce both energetic and infdfmation
masking of the target speech.
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Listeners are able to use various perceptual/cognitive cues
to release target speech from irrelevant-speech-induced informa-
tional masking. The cues include perceptual familiarity with the
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What is perceived spatial separation? It is well known that
masking of a target sound can be reduced if a spatial separation is
introduced between the target and the masker. The spatial unmask-
ing is caused by the combination of three effects: (1) the head-
shadowing effect (which improves the signal-to-masker ratio
(SMR) in sound-pressure level at the ear near the target), (2) the
effect of interaural-time-difference (ITD) disparity (which enhances
auditory neuron responses to the target sound), and (3) the percep-
tual effect (which facilitates both selective attention to the target
and suppression of the masker). However, when the listening envi-
ronment is reverberant, a sound source induces numerous reflec-
tions bouncing from surfaces, and both the unmasking effect of
head shadowing and that of ITD disparity are ¥mited or even abol-
ished, but the perceptual unmasking caused by perceptual separa-
tion between the target and masker is still effeftive (Freyman et al.,
1999; Kidd, Mason, Brughera, & Hartmann§ 2005; Koehnke &
Besing, 1996; Zurek, Freyman, & Balakrishnar§ 2004). Thus, intro-
ducing a (simulated) reverberant listening cdhdition can be used
for isolating the perceptually unmasking efffct. This unmasking
effect is closely associated with the auditofy precedence effect
(see below).
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distinguish signals from various sources and
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1949; Zurek, 1980). Thus, this perceptual fusion (integration) is able
to produce<®,2¥y a &P g @a between uncorrelated sound
sources. For example, when both the target and masker are pre-
sented by a loudspeaker to the listener’s left and by another loud-
speaker to the listener’s right, the perceived location of the target
and that of the masker can be manipulated by changing the inter-
loudspeaker time interval for the target and that for the masker
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(Li et al., 2004). More specifically, for both the target and masker,
when the sound onset of the right loudspeaker leads that of the left
loudspeaker by a short time (e.g., 3 ms), both a single target image
and a single masker image are perceived by human listeners as
coming from the right loudspeaker. However, if the onset delay
between the two loudspeakers is reversed only for the masker,
the target is still perceived as coming from the right loudspeaker
but the masker is perceived as coming from the left loudspeaker.
The perceived co-location and perceived separation are based on
perceptual integration of correlated sound waves delivered from
each of the two loudspeakers. Note that when the two loudspeakers
are symmetrical to the listener, a change between the perceived co-
location and the perceived separation alters neither the SMR in
sound pressure level at each ear nor the stimulus-image compact-
ness/diffusiveness (Li et al., 2004). It has been confirmed that per-
ceived target-masker spatial separation facilitates the listener’s
selective attention to target signals and significantly improves rec-
ognition of target signals (Freyman et al., 1999; Huang et al., 2008;
Huang et al., 2009; Li et al., 2004; Li et al., 2013; Rakerd et al., 2006;
Wau et al., 2005). Moreover, it has been known that the perceptual
fusion can be induced by headphone simulation of the presentation
of the direct and reflection waves (Brungart et al., 2005; Huang
et al., 2011; also see a review by Litovsky et al., 1999).
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Event-related potentials (ERPs) offer a way to study the effects
of masking on speech processing under both passive and active lis-
tening conditions (Alho, 1992; Bennett, Billings, Molis, & Leek,
2012; Billings, Bennett, Molis, & Leek, 2011; Martin & Stapells,
2005; Tremblay, Friesen, Martin, & Wright, 2003). This is in con-
trast to psychophysical studies of speech recognition that require
the listener to attend to and repeat the target sentence immedi-
ately after the stimulus presentation (e.g., Freyman et al., 1999;
Li et al., 2004). Thus, when a masker is present, using the ERP-
recording method, both the effect of introducing attention to target
speech (by shifting attention from irrelevant stimuli to target
speech) and the effect of facilitating attention to target speech
(by moving the masker image away from the attention focus on
target speech) on cortical representations of the target speech sig-
nal can be studied.

It has been known since the Hillyard, Hink, Schwent, and Picton,
(1973) that auditory ERPs can be enhanced by attention to the
sound presentation (Nager, Estorf, & Miinte, 2006; Snyder, Alain,
& Picton, 2006; Woldorff & Hillyard, 1991; Woods, Alho, &
Algazi, 1994). However, it is still not very clear (1) whether the
enhancing effect of attention is predominantly on the primary
and/or secondary auditory cortex or equally on all the auditory cor-
tical regions (for reviews see Fritz, Elhilali, David, & Shamma, 2007;
Muller-Gass & Campbell, 2002), and more importantly, (2) whether
the attentional facilitation of auditory ERPs depends on listening
conditions, particularly when a disrupting masker background is
presented.

The N1/P2 ERP complex, a group of components of the early cor-
tical auditory-evoked potentials, can be reliably elicited by speech
stimuli (e.g. single syllables) even when a noise or a speech masker
is co-presented (Billings et al., 2011; Martin, Kurtzberg, & Stapells,
1999; Martin, Sigal, Kurtzberg, & Stapells, 1997; Martin & Stapells,
2005; Muller-Gass, Marcoux, Logan, & Campbell, 2001; Polich,
Howard, & Starr, 1985; Tremblay et al., 2003; Whiting, Martin, &
Stapells, 1998). It has been recently reported that, relative to a
steady-state noise masker, a four-talker speech masker with a
SMR of —3 dB causes a larger masking effect on the N1 component
to spoken syllables when listeners’ attention was drawn away from
the acoustic signals (the passive homogenous paradigm) (Billings



et al., 2011). Also, to examine whether attention affects ERPs under
masking conditions, Billings et al. (2011) collapsed waveforms
across the three masking conditions (continuous steady-state
noise, interrupted noise, four-talker speech) and found that the



perceived af coming from the right ear. On the contrary, for the
perceptual geparation condition, the masker was presented with
the left ear Ifading the right ear by 3 ms. Note that a shift between
the perceptyhl co-location condition and the perceptual separation
condition dif§ not alter either the SMR or the compactness/diffuse-
ness of sourffl images.
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ERP recordings were conducted in a dim double-walled
sound-attenuating booth (EMI Shielded Audiometric Examination
Acoustic Suite) that was equipped with a 64-channel NeuroScan
SynAmps system (Compumedics Limited, Victoria, Australia).
The participant was seated 1m in front of a 12-inch Lenovo
monitor.

Electroencephalogram (EEG) signals were recorded by the Neu-
roScan system with a sample rate of 1000 Hz and the reference
electrode located on the nose. EEG signals were on-line amplified
500 times and band-pass filtered between 0 and 200 Hz. Wave-
forms were then off-line band-pass filtered between 1 and 30 Hz
(Billings et al., 2011). Eye movements and eye blinks were recorded
from electrodes located superiorly and inferiorly to the left eye and
at the outer canthi of the two eyes. Ocular artifacts exceeding
+70 uV were rejected before averaging. A recording period
including 100 ms before (served as the baseline) and 500 ms after
the target-syllable onset was used for data analyses.

The averaged ERPs evoked by the target syllable /% [ under each



they had heard the probe}syllable | ! [, Whose fundamental fre-
quency was 258 Hz. To lifhit eye movefhents, participants were
also asked to watch a crosqin the centre §f the monitor. The inter-
val between trials was 200 ms. Due to tfe time for button-press-
ing responses, it took long@r time (aboutf§l5 min) to complete one
recording block under the fctive conditi

3. Results
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Fig. 2 shows average ERP waveforms at each of the electrode
sites across the 6 passive-listening conditions (associated with 6
masker-type/perceptual-location combinations, Panel A) and those
across the 6 active conditions (Panel B). The N1/P2 complex was
salient at the fronto-central electrode sites, and did not exhibit

obvious differences between the left and right hemispheres. Since
the N1/P2 complex at the center site (Cz) was the most salient (also
see Martin et al., 1997, 1999; Martin & Stapells, 2005; Tremblay
et al., 2003), both the N1/P2 peak-to-peak amplitude and the laten-
cies of the N1 and P2 components recorded from the site Cz were
selected for statistical analyses.

Grand mean ERP waveforms recorded from the electrode site Cz
across participants to the target syllable / [ under each of the 12
conditions are shown in Fig. 3. Obviously, the syllable evoked a
much larger N1/P2 complex when the masker was noise (either
steady or modulated) than when the masker was speech, especially
under the passive-listening condition. Also, the N1/P2 complex
amplitude was generally larger when the target and masker were
perceptually separated than when they were co-located under
the passive-listening condition when the masker was noise and
under the active-listening condition when the masker was speech.
Furthermore, a shift from the passive-listening condition to the
active-listening condition markedly enhanced the N1/P2 complex,
especially when the masker was speech.

The average values of N1/P2 peak-to-peak amplitudes to sylla-
ble /¥ [ across participants under each of the 12 conditions are dis-
played in Fig. 4. A 3 (masker type: steady noise, modulated noise,
speech) by 2 (listening condition: passive, active) by 2 (perceptual
location: perceived co-location, perceived separation) repeated-
measures analysis of variance (ANOVA) showed a significant main
effect of relative location [F(1,11)=28.370.# <0.05, partial #?=
0.432], a significant main effect of attention type [F(1,11) =7.358,

~&¥ <0.05, partial #* = 0.401], a significant main effect of masker type

[F(1,11)=24.870-® <0.001, partial #?=0.693], and a significant
two-way interaction on the N1/P2 peak-to-peak amplitude
between masker type and listening condition [F(2,22)=4.479,

¥ <0.05, partial #*=0.289]. However, the two-way interaction

between masker type and perceptual location, the two-way inter-

action betweendlisifling cqﬁpiq’bl'f 7839505.779.9(sTEMC359.01EMC59T1
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Fig. 3. Grand mean ERP waveforms recorded from the electrode site Cz across participants to the syllable /# [ under each of the 12 conditions. The target syllable /% | evoked
much larger N1/P2 complex when the masker was noise (either steady or modulated) than when the masker was speech, especially under the passive-listening condition.

PASSIVE LISTENING ACTIVE LISTENING

Amplitude (uV)

. “Sreaty “Motuldted..  “TwoITalker Steatv, Maodulated..  TwiocTalke
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Maskeas Toypre Maskan Tynr

W sty enfnediel. T qpercepudlty separdret

Fig. 4. Average values of N1/P2 peak-to-peak amplitudes to the target syllable /b [ across participants under each of the 12 conditions.
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To %urther examine the difference in N1/P2 peak-to-peak ampli-
tude between the perceptual co-location condition and the percep-
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Fig. 5 shows the mean values of N1 and P2 latencies across
participants for each of the masker types under either the passive-
listening condition (left panels) or the active-listening condition
jght panels). As can be seen in Fig. 5 Jperceptual separation partic-
arly shortened the N1 and P2 latences only when the masker was
eech under the speech-masking corjdition. The low-right panel of
.3 also shows that under the activefllistening conditioning, a shift
m the perceptual co-location to pefeptual separation shortened
e N1 and P2 latencies when the madker was speech. Interestingly,
shift from the passive-listening corjition to the active-listening
ndition increased the N1 and P2 lagencies when the masker was
eech.

For the N1 component, a 3 (
ndition) by 2 (perceptual locatio
owed that the two-way interactio
d masker type was significant [F(
=0.336], and the two-way i
ndition and masker type was
0.001, partial #? = 0.620]. Howev
tion between perceptual location a
ree-way interaction was significa
mponent, a 3 by 2 by 2 repeat
at the three-way interaction was
.001, partial n? = 0.549].

sker type) by 2 (listening
repeated-measures ANOVA
between perceptual location
,22)=5.5754 <0.05, partial
eraction between listening
significant [F(2,22)=17.985,
, neither the two-way inter-
d listening condition nor the
(both<® > 0.05). For the P2
-measures ANOVA showed
ignificant [F(2,22)=13.390,
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For the N1 component, under the passive-listening condition, a
3 (masker type) by 2 (perceptual location) repeated-measures
ANOVA confirmed a significant two-way interaction [F(2,22)=
3.711¥ <0.05, partial 7>

Nl j P2 "F“:? w B
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Fig. 5. The mean values of N1 and P2 latencies across participants for each of the ma

Masker type

sker types under either the passive-listening condition (left panels) or the active-listening

condition (right panels). Perceptual separation particularly shortened the N1 and P2 latencies when the masker was steady noise under the passive-listening condition and

when the masker was speech under the active-listening condition. A shift from th
latencies only when the masker was speech.

Regardless of whether the listening condition was passive or
active, the peak-to-peak amplitude of the N1/P2 complex evoked
by the syllable /#i/ was smaller under the speech-masking condi-
tion than that under either the steady-noise-masking or modu-
lated-noise-masking condition, particularly when the target and
masker were perceptually co-located. The results suggest that the
two-talker speech masker caused a heavier masking effect on the
early cortical representation of the target syllable than the noise
maskers (also see Bennett et al., 2011). Since all three masking con-
ditions had the same long-term SMR, the differences in masking
potency between the maskers (particularly under the passive-lis-
tening condition) suggest that in addition to the energetic masking
effect, irrelevant-speech-induced informational masking of speech
signals occurs at early cortical processing stages. The results are
generally in agreement with previous studies showing that the
speech masker caused a larger masking effect on the N1 compo-
nent of the ERPs to a syllable than the steady-state noise masker
(Billings et al., 2011).

ERPs are summated voltages of postsynaptic potentials of neu-
rons which are activated at approximately the same time (Luck,
2005). Since a sound with a particular feature evokes a particular
group of neurons in the auditory cortex (Bendor & Wang, 2005;
Nelken, Rotman, & Yosef, 1999; Rauschecker, 1997; Theunissen,
Sen, & Doupe, 2000), the speech signal and speech masker, due
to their similar acoustic structure, may activate neuron groups that
overlap to a considerable extent, leading to a larger masking effect

e passive-listening condition to the active-listening condition prolonged the N1 and P2

on activity of cortical neurons encoding speech signals. On the
other hand, since both the steady-state speech-spectrum noise
and the speech-envelope modulated speech-spectrum noise do
not contain the specific acoustic structures of speech sounds, they
do not evoke the neuronal activation patterns that are specifically
evoked by speech sounds.

As mentioned in the Introduction, informational masking of tar-
get speech occurs at both perceptual (e.g., phonemic identification)
and cognitive (e.g., semantic processing) levels, interfering with
the psychological segregation of target speech from masking
speech (e.g., Arbogast et al., 2002; Brungart, 2001; Brungart &
Simpson, 2002; Durlach et al., 2003; Ezzatian et al., 2011;
Freyman et al, 1999; Freyman et al., 2001; Kidd et al., 1994;
Kidd et al., 1998; Li et al., 2004; Schneider et al., 2007; Wu et al.,
2005). Since the speech masker causes a much larger masking
effect on ERPs to the target syllable than a steady-state or ampli-
tude-modulated noise masker even under the passive-listening
condition, informational masking of speech can also occur at the
level of early cortical processes, perhaps at pre-attentional stages.

Note that some previous studies, such as the Scott, Rosen,
Wickham, and Wise (2004), did not provide firm evidence for an
involvement of the primary auditory cortex in informational or
energetic masking, but showed that different masking contexts
for speech perception recruit different neural systems beyond the
primary auditory cortex. Specifically, under the speech-in-noise
listening condition, regions in the rostral and dorsolateral prefrontal



cortex and posterior parietal cortex are recruited; under the
speech-in-speech listening condition, the bilateral superior
temporal gyri and superior temporal sulci are recruited. Clearly,
further brain imaging studies are needed to verify whether speech
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