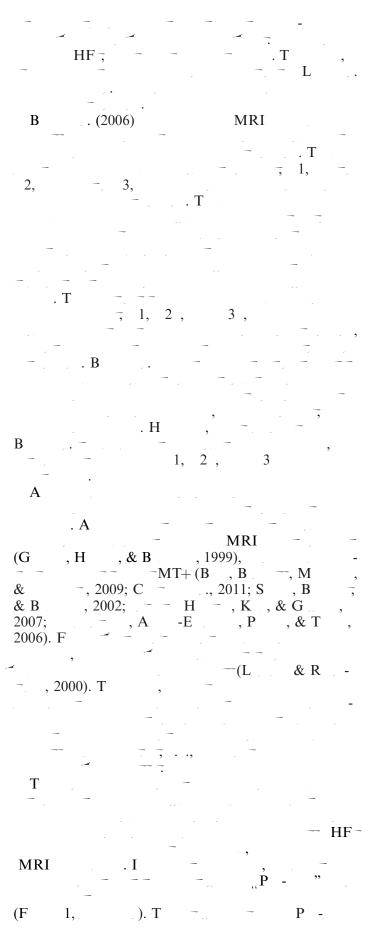
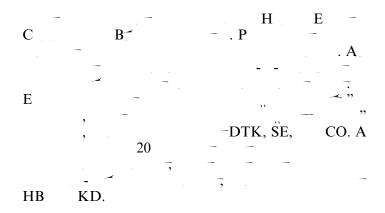
A en ion mod la es ne ronal correla es of in erhemispheric in egra ion and global mo ion percep ion

B rak Akin	Department of Radiology, Medical Physics, University Medical Center Freiburg, Germany	
Ce lan O dem	Vrije Universiteit Brussel, Brussels, Belgium	
Seda Erogl	Ege University, Izmir, Turkey	
D d Taslak Keskin	Bozok University, Yozgat, Turkey	
Fang Fang	Department of Psychology and Key Laboratory of Machine Perception (Ministry of Education), Peking University, Beijing, China Peking-Tsinghua Center for Life Sciences, Beijing, China PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China	ÊX
Ka ja Doerschner	Department of Psychology & National Magnetic Resonance Research Center, Bilkent University, Ankara, Turkey	$\widehat{\mathbb{D}}\boxtimes$
Daniel Kers en	Department of Psychology, University of Minnesota, Minneapolis, MN	
H se in Bo aci	Department of Psychology & National Magnetic Resonance Research Center, Bilkent University, Ankara, Turkey	$\widehat{\mathbb{P}}\boxtimes$

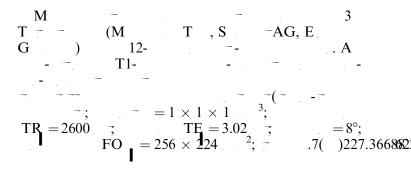
н уе и во асі

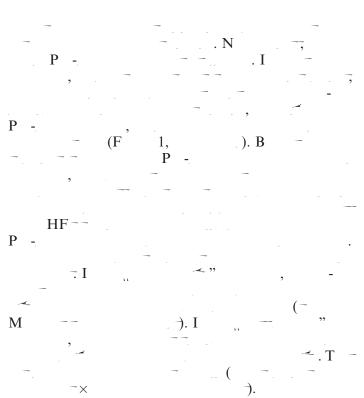
In earl re ino opic areas of he h man is als sem, informa ion from he lef and righ is al hemifields (VHFs) is processed con rala erall in o hemispheres. Despi e his segrega ion, e ha e he percep al e perience of a nified, coheren , and nin err p ed single is al field. Ho e ac l he is al s s em in egra es informa ion from he o VHFs and achie es his percep al e perience s ill remains largel nkno n. In his s d sing fMRI, e e plored candida e areas ha are in ol ed in in erhemispheric in egra ion and he percep al e perience of a nified, global mo ion across VHFs. S im li ere o-dimensional, comp ergenera ed objec s i h par s in bo h VHFs. The re inal image in he lef VHF al a s remained s a ionar , b in he e perimen al condi ion, i appeared o ha e local

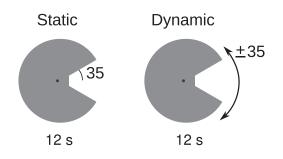

mo ion beca se of he percei ed global mo ion of he objec . This percep al effec co ld be eakened b direc ing he a en ion a a from he global mo ion hro gh a demanding fi a ion ask. Res I s sho ha la eral occipi al areas, incl ding he medial emporal comple, pla an impor an role in he process of percep all e perience of a nified global mo ion across VHFs. In earl areas, incl ding he la eral genic la e n cle s and V1, e obser ed correla es of his hen a en ion is no percep al e perience onl direc ed a a from he objec. These findings re eal effec s of a en ion on in erhemispheric in egra ion in mo ion percep ion and impl ha bo h he bila eral ac i i of higher-ier is all areas and feedback mechanisms leading o bila eral ac i i of earl areas

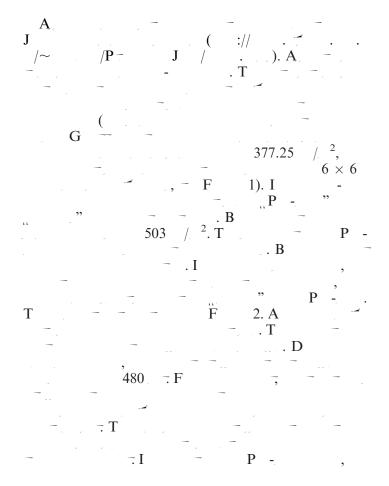

Citation: Akin, B., Ozdem, C., Eroglu, S., Keskin, D. T., Fang, F., Doerschner, K., Kersten, D., & Boyaci, H. (2014). Attention modulates neuronal correlates of interhemispheric integration and global motion perception. Journal of Vision, 14(12):30, 1–13, http://www.journalofvision.org/content/14/12/30, doi:10.1167/14.12.30.

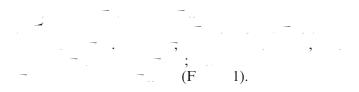
pla roles in he percep alle perience of a nified is al field.


In rod c ion


E , 2000; (G ..., S --, & H , 1988). Т -, S . H 0 . P (HF) (A. T. S. , 2004; T - & S , Н ., M , L , & D , 1998; - L & 2004). H . I & R , 2000; 🥣 & (L , 1998). T F & M -(C)-, 1990). D . L С H (2009), -MRI EEG - T (1) (LOT) -MT+. I MT+ 1 . T MT+ LOT , . (2004) -1. – EEG MRI . T LOT MT+, . B . H .


MR da a acq isi ion


Me hods


Par icipan s

$$30^{\circ} \times 22^{\circ}$$
 - . T
CIE . . . T
 $x = 0.357, y = 0.351.$

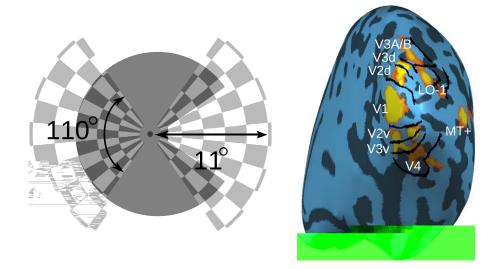
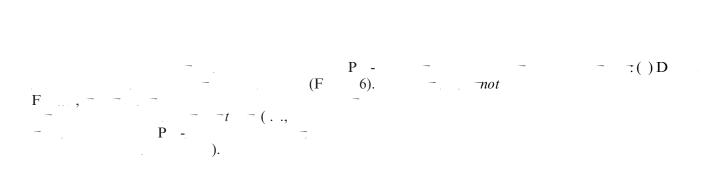
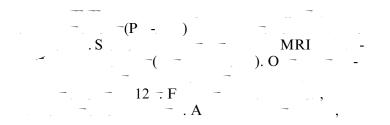
S im li

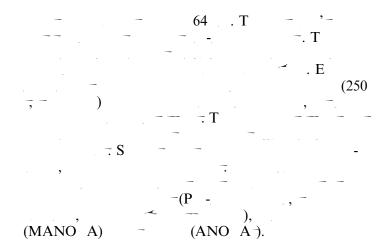
E perimen al proced re and fi a ion ask

С –	-
MRI – –	. E
	12 -,
—	12 - T -
10 -	-
(F 2). E – 250 –	
10 - I	-
2	I
<u></u> >>	
	T
	- 200 -
-	1750 2250 -
(•
665 / ² ; :747 / ² ;	:585 / ²),
- MR -	(ORP 904
MRI – – – – , C	D,
P , PA, SA). I	-
,	<i></i>
D	· · ·
D	· -

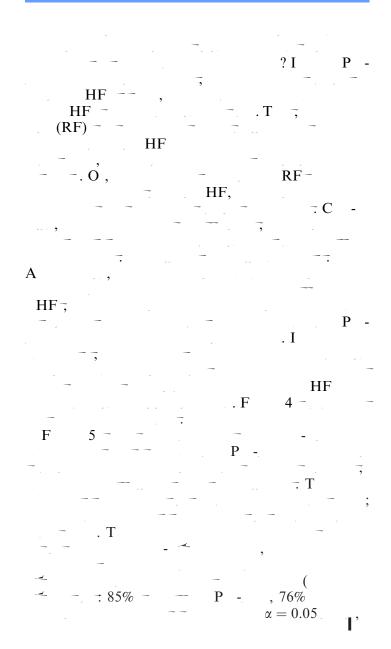
ROI locali a ion

ROI (LGN), 1,
2, 3, 3A/B, 4, LO-1
, – – (8 Н), – –
F 3. T -
1 3. 1
, 10 $$ T
-250 -, 10 -
. M – H ⁻ , D ,
Н (2002) – с с с с с
, MT+. MT+.
6.75° – 9°
6.75° – , 9° – . E – –
- 12 - 12
12,
-
D 12-, ,
12
· - ,
MST,

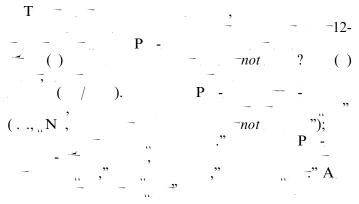





Figure 3. ROIs were identified using wedges texture-mapped with counter-phase contrast reversing checkerboard patterns in early visual areas (the Pac-man figure in the background is shown here for visualization purposes; it was not present in the actual experiment). For MT+, moving random dots were used as a localizer. Boundaries between early visual areas were drawn using the results of a separate retinotopic mapping session for each participant. The image on the right shows ROIs and visual area boundaries on an inflated brain of one participant.

M, 2000). H, 2002;	MR da a processing and anal sis
T , - MT+.	F Q - B - B - B - B - B - C - B - C - C - C
Re ino opic mapping s im li	,
A	— (0.015 H) (A. M. S , 1999). N – – – – – – – – – – – – – – – – – –
	F - ROI -
$-\frac{10^{\circ}}{10^{\circ}}$ $-\frac{10^{\circ}}{30^{\circ}}$ $-\frac{10^{\circ}}{360^{\circ}}$ $-\frac{360^{\circ}}{12}$	B Q (p <
T	10 ⁻⁴ ,)
- T - 10 - F , 3A/B, LO-1,	· · · · · · · · · · · · · · · · · · ·
LO-2 -, L H (2006) (T, 1997). T	. T
3-D	
В – –	. A , -
MR -	(F 5), -
(E , G , & , 1997; S ., 1995).	- $ -$



Beha ioral e perimen

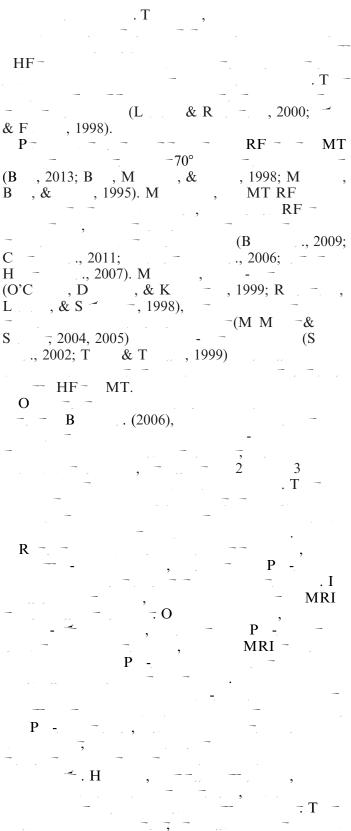


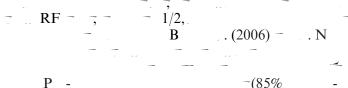
Res Is

Beha ioral e perimen

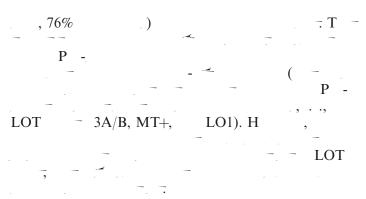
= 27.18, p < 0.0001. N = 27.18, p < 0.0001. N $= 0.01 \dots T$ A^{-} 5) = 22.41, p < 0.0001, 0.0001, 0.000, 0.00

1 - I


Average % MR signal difference


Passive View

Disc ssion


3A/B, LO-1, MT+ Р-LGN, Р-. - I . T HF-- T (T 1997). M L, MT+, L , ., 2004; T (A. T. S. ., 1998) - L . (2009) 1 LOT MT+, LOT 1 (- _ -., 2004). T MRI, -(B & B , 2005; C & M - -, 1990) 1 (B & B , 2005; L & R - , 2000). T - M , LGN (L & R - , 2000; , P - , , , & H , 2004). G S 1 -(B & B , 2005), MT+ 2004) 1. S LGN -. , . T . T

 \mathbf{K} (B) (4). -LGN MT+ ., 2004), & B , 2005; S . I LGN -(SC), SC MT (B 2004). M SC MT (B , 2004; MT+ C -, 2004). I SC LGN - - T 1, 2, 3 MT С ... , 2000; N - & C -, G ç, B , S -(G 1996). I – MRI DTI, Κ (2011), MT-1 - T -MT -, -, S - MT (C - & M - , 1990; G ç (C ~ & M -HF-- MT 1, 2 3 (B & B , 2005: , 2004). H В 1, 2, 3. MT -.T -, MT+ E (B & B , 2005; C -., 2011; C , H , D , & , 2005; C -., 2011; C , R - , K , T - , & S , 1997; S , 2002). M , ., 1999) – ... – _ -(G LGN (O'C , F-, P-, & K -, 2002).

Р -(85%)

Concl sions

Keywords: global motion perception, interhemispheric integration, fMRI, visual brain, perceptual experience of unified visual field

Ackno ledgmen s

S R - C E C	S T M	T 1001" C I	(108K398),
R		-GA-2008-23	39467),
T - A	S S	"D	-
I – "	. A		-
		. ,	М – ,
C M		R –	
NIH N –	B	Ι – .	C
C G (P30 NS057091)). HB K	D
-		F.	
,	C , S	D	
	•		
С			
C –	: H –	В.	
E : .	a		
A ─∵ D	P-	& N	1

R -Μ R – С , B.⁻ -, A-, T-, .

References

- B , H., , H., F⁻ , M., N⁻ , A., , M., T⁻ , C., & E , . (2006). T : I -
- The Journal of Neuroscience, 26(34), 8804 8809. B , R. T., & B , D. C. (2005). S
- MT. Annual Review of Neuroscience, 28, 157 189.
- B , K. H. (2004). T : М . I L. M. C , J. S. , & C. J. B 1216).
- , D. C. (2013). M : H , D. C. (2013). M B (E ⁻.), The new visual neurosciences (. 763 775). C -, MA: MIT P —
- B , D. C., B , --, S., M , M. C., & P. (2009). P Vision Research, 49(10), 1065 1072.
- B , D. C., M , M. C., & , L. M. (1998). L
- -. Vision Research, 38(12), 1731 1743. C – , C. (2004). T
- (. 592 608). C , MA: MIT P ----
- C , S., & M , J. (1990). O : O , . . - Journal of Com-. . . parative Neurology, 298(2), 188 214.
- C -, S., B , L., 'A -, G., B , D. C., T , M., & M , M. C. (2011). S BOLD -. PLoS ONE, 6(7), 21661.
- C ..., J., H , S., D⁻⁻ , S., & , F. A. (2001). – ? Acta Psychologica, 107(1), 69 94.
- E , S., G , G., & , B. (1997). R -- -
- MRI. Cerebral G
- , S. P., H , D. J., & B , G. M. (1999). S - . Proceedings of the National
- Academy of Sciences, USA, 96(6), 3314 3319. , M. S. (2000). C G : D -

? Brain, 123(7), 1293 1326.

- $G \ \ \ c, \ E., \ B \ \ , \ \ J., \ S \ \ , \ \ ., \ \& \ K \ \ , \ A.$ (2011). I . Current Biology, 21(17), 1494 1499.
- H , K., K , K., & G , J. (2007). T -4. The Journal of Neuroscience, 27(44), 11896 11911.
- H⁻⁻, A., D , R., & H , D. (2002). R -MT MST. The Journal of Neuroscience, 22(16), 7195 7205.
- L . . , . A., & R . . . , P. R. (2000). T - . Trends in Neurosciences, 23(11), 571 579.
- L , J., & H , D. J. (2006). T . The Journal of Neuroscience, 26(51), 13128 13142.
- L , M., & , . (2004). T - . Nature Reviews Neuroscience, 5(9), 729 735.
- L , ., , N., C , ., & H , B. (2009). EEG Μ MRI. NeuroImage, 46(4), 989 997.
- M M –, S. A., & S –, D. C. (2004). M . Neuron, 42(4), 677–686.
- M M –, S. A., & S , D. C. (2005). P - . The Journal of Neuroscience, 25(41), 9444 9448.
- M , M., B , D., & , L. (1995). T Nature, 376(6540), 507 509.
- M , M., T ⁻ , M., M , D., F A., C , G., & B , D. (2000). A
- MRI. Nature Neuroscience, 3(12), 1322 1328. N , N., & C , M. C. (1996). P
- . Neuropsychologia, 34(4), 297 309.
- O'C , D. H., F- , M. M., P , M. A., & K – , S. (2002). A Nature
 - Neuroscience, 5(11), 1203 1209.
- O'C , K. M., D , P. E., & K , N. (1999). MRI . Nature, 401(6753), 584 587.

- O'C , K. M., R ⁻ , B. R., K , K. K., T ⁻ , A., & S , R. L. (1997). ⁻ MRI MT MST. Neuron, 18(4), 591 598.

- 268(5212), 889–893. S , L. C., P , K. F., , M. J., & H , J. C. (2004). B - 1: A
- H , J. C. (2004). B I: A MT. Nature Neuroscience, 7(10), 1123 1128.
- S , A. M., L , B. K., R , E., F. Q., S , T. M., , ., ... F , J. A. (1999). I ______ MRI ______. Neuroimage, 9(5), 526 533.
- S , A. T., , , A. L., & S , K. D. (2004). N : E . Human Brain Mapping, 21(4), 213 220.

- T , R. B., M , J. D., H , N. K., L , P. J., L , A. K., R , J. B., ... D A. M. (1997). F -- 3 -- . The Journal of Neuroscience, 17(18), 7060 7078.
- T , R. B., M , J. D., H , N. K., L , A. K., & D , A. M. (1998). T
 - Proceedings of the National Academy of Sciences, USA, 95(3), 818 824.
- T , R. B., S , E., S , M. S., & H , S. L. (1988). F - . II. R . The Journal of Neuroscience, 8(5), 1531 1568.
- T , S., & T , J. C. M. (1999). F -
- . Nature, 399(6736), 575 579. , S., D , M., , J., D -M , C., S , C., & B , J. (2004). T . Neuroimage, 21(3), 818 828.
 - T , S. (2006). D , K., P , F., & MT -
 - Nature Neuroscience, 9(9), 1156 1160.
- , S., & F , D. (1998). T R : I - . Brain, 121(1), 25 45.