
Neural Mechanisms of Motion Perceptual Learning
in Noise

Nihong Chen ,1,2,3,4,5* Junshi Lu,1,2,3,4 Hanyu Shao,6 Xuchu Weng,7 and
Fang Fang1,2,3,4*

1School of Psychological and Cognitive Sciences and Beijing Key Laboratory of Behavior and
Mental Health, Peking University, Beijing 100871, People’s Republic of China

2Key Laboratory of Machine Perception (Ministry of Education), Peking University, Beijing
100871, People’s Republic of China

3Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, People’s
Republic of China

4IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, People’s
Republic of China

5Department of Psychology, University of Southern California, Los Angeles, California 90089-1061
6State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of

Sciences, Beijing 100101, China
7Center for Cognition and Brain Disorders, Hangzhou Normal University, Hangzhou 311121,

People’s Republic of China

r r

Abstract: Practice improves our perceptual ability. However, the neural mechanisms underlying this
experience-dependent plasticity in adult brain remain unclear. Here, we studied the long-term neural corre-
lates of motion perceptual learning. Subjects’ behavioral performance and BOLD signals were tracked
before, immediately after, and 2 weeks after practicing a motion direction discrimination task in noise over
six daily sessions. Parallel to the specificity and persistency of the behavioral learning effect, we found that
training sharpened the cortical tuning in MT, and enhanced the connectivity strength from MT to the intra-
parietal sulcus (IPS, a motion decision-making area). In addition, the decoding accuracy for the trained
motion direction was improved in IPS 2 weeks after training. The dual changes in the sensory and the high-
level cortical areas suggest that learning refines the neural representation of the trained stimulus and facili-
tates the information transmission in the decision process. Our findings are consistent with the functional
specialization in the visual cortex, and provide empirical evidence to the reweighting theory of perceptual
learning at a large spatial scale. Hum Brain Mapp 38:6029–6042, 2017. VC 2017 Wiley Periodicals, Inc.
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INTRODUCTION

Our ability to discriminate or detect sensory stimuli can
be enhanced by practice. This phenomenon, known as per-
ceptual learning, is widely used as a model to study
experience-dependent cortical plasticity in adults [Fahle
and Poggio, 2002; Sagi, 2011; Watanabe and Sasaki, 2015].
One characteristic of perceptual learning is that the
acquired behavioral improvement is usually restricted to
the physical properties of the trained stimulus. Such spe-
cificity implies that learning is mediated by changes in the
early visual processing stage, among neurons with a rela-
tive small receptive field and feature-selective tuning [Pog-
gio et al., 1992]. Electrophysiological and brain imaging
studies have revealed learning-related changes at multiple
stages in the visual cortex, from the primary visual cortex
V1 [Hua et al., 2010; Jehee et al., 2012; Schoups et al.,
2001], extrastriate cortex such as V4 [Adab and Vogels,
2011], to object selective areas in the inferior temporal cor-
tex [Bi et al., 2014; Lim et al., 2015]. An alternative hypoth-
esis, however, assumes that perceptual learning engages
the high-level decision stage. Instead of changes in the
tuning properties of sensory encoding neurons, learning
can be modeled via adjusting the weights between the
early and late areas, so as to optimize the processing of
task-relevant information [Bejjanki et al., 2011; Dosher and
Lu, 1999; Law and Gold, 2009].

Compared to the “early” theory regarding the neural
locus of perceptual learning, the “late” theory has received
limited support from empirical evidence. A closely related
issue is how learning-induced changes in the sensory and
decision processes are implemented at a larger spatial
scale beyond local visual circuits. When multiple visual
areas participate in the information processing for a task,
would perceptual learning trigger reweighting at the
regional level? Take motion processing for example, MT
and V3A are recognized as two key areas in the human
brain [Bartels et al., 2008; Orban et al., 2003; Tootell et al.,
1997], and their involvement in motion perceptual learning
has been demonstrated in several brain imaging studies
[Chen et al., 2015, 2016; Shibata et al., 2012, 2016; Tompson
et al., 2013; Vaina et al., 1998]. Previously, we found
motion direction discrimination training sharpened the
cortical tuning for the trained motion direction in area
V3A, and enhanced the connectivity from V3A to the
motion-decision making area IPS (intraparietal sulcus)
[Chen et al., 2015]. While these results indicate that learn-
ing induces retuning in the visual cortex, and reweighting in
the high-level decision process, it remains unclear why
there was a lack of learning effect in area MT.

We hypothesized that the neural correlates of perceptual
learning are based on the functional specilization of visual
cortex. Neuropsychological findings suggest that V3A
dominates in local motion processing, whereas MT1 dom-
inates in global motion processing [Cai et al., 2014; Vaina
et al., 2003, 2005]. This specilization is consistent with the
learning-related changes in V3A when subjects practiced

motion direction discrimination at 100% coherence [Chen
et al., 2015, 2016]—as all dots move in the same direction,
subjects’ ability to discriminate motion directions relied on
the improvement in processing the local motion informa-
tion. Conversely, motion discrimination learning may be
mediated by MT/MST when global integration of motion
direction is necessary. To test this hypothesis, we intro-
duced external noise in the motion direction discrimina-
tion task by reducing the coherence level of the moving
dots.

In the present study, we studied the neural mechanisms
of motion perceptual learning in noise over a long-time
course. Human subjects were trained to discriminate the
global direction of moving dots at 35% coherence over six
daily sessions. Subjects’ behavioral performance and BOLD
signals were measured before, immediately after, and 2
weeks after training. We examined how learning affected
the activation pattern of the trained motion direction in V1-
V4, MT, MST, and IPS, using multi-voxel pattern analysis.
In addition, we examined whether learning changed the
effective connectivity between the visual motion areas and
IPS using dynamic causal modeling (DCM).

MATERIALS AND METHODS

Subjects

Fourteen subjects (nine females) participated in the study.
All subjects were right-handed with reported normal or
corrected-to-normal vision and had no known neurological
or visual disorders. Their ages ranged from 20 to 29 years.
They were na€ıve to the purpose of the study and had never
participated in any perceptual learning experiment before.
They gave written, informed consent in accordance with
the procedures and protocols approved by the human sub-
ject review committee of the Center for Cognition and Brain
Disorders, Hangzhou Normal University.

Stimuli and Apparatus

Subjects were viewing random dot kinematograms
(RDKs) consisting of 400 dark dots (luminance: 3.76 cd/
m2; diameter: 0.18), with a gray background (luminance:
27.5 cd/m2). The dots moved at a velocity of 378/s within
a virtual circular area subtending 98 in diameter (Fig. 1A).



before, after, and 2 weeks after training, they performed
pre-training test (Pre), post-training test 1 (Post1), and
post-training test 2 (Post2) (Fig. 1B).

Two RDKs were presented successively per trial, with
motion directions of h and h 6 Dh for 200 ms each and were
separated by a 600 ms blank interval (Fig. 1A). The temporal
order of these two RDKs was randomized. Subjects judged
whether the direction of the second RDK was clockwise or
counter-clockwise relative to the first one via a right-hand
finger press on the response key. After each response, feed-
back was provided to the subject by brightening (correct
response) or dimming (incorrect response) the fixation point.
The next trial began 1 s after feedback. Dh was estimated
adaptively from trial to trial with the QUEST staircase, to
quantify subjects’ discrimination threshold at 75% correct
[Watson and Pelli, 1983]. For each subject, the trained direc-
tion (h) was chosen randomly from eight non-cardinal direc-
tions (22.58, 67.58, 112.58, . . ., and 337.58), and was fixed for
all the training sessions. A daily session (about 1 hour) con-
sisted of 25 QUEST staircases of 40 trials. The discrimination
thresholds from these staircases were averaged, and then
plotted as a function of training day. The learning curves
were fitted with a power function [Jeter et al., 2009].

During each test phase, subject’ motion direction dis-
crimination thresholds were measured at four motion
directions, 08, 308, 608, and 908 deviated from the trained
direction (hereafter referred to as 08, 308, 608, and 908) in
both psychophysical and fMRI tests. Discrimination
thresholds from 10 Quest staircases for each direction
were averaged as a measure of subjects’ discrimination
performance. Subjects’ performance improvement at each

motion direction was calculated as (pre-training threshold –
post-training threshold)/pre-training threshold 3 100%. The
learning effect specific to the trained direction was quantified
as Imp (trained) – Imp (untrained), where the improvement for
the untrained directions was the average improvement for
the 308, 608, and 908 directions.

After psychophysical measurements, subjects’ BOLD sig-
nals responding to the four motion directions in 16 fMRI
runs were acquired in two daily sessions (eight runs per ses-
sion). Similar to the task in psychophysical tests, subjects per-
formed motion direction discrimination during scan. In a
trial, two RDKs were each presented for 200 ms and were
separated by a 600 ms blank interval, followed by a 1,400 ms
blank interval between trials. For the directions of the two
RDKs, one was fixed in a block and could be 08, 308, 608, or
908. The other deviated from the fixed one by 6 Dh, which
was the discrimination threshold measured in the corre-
sponding psychophysical test, to make subjects perform
equally well at 75% correct across the stimulus conditions
and tests. At Pre, we had a fifth condition, in which the
RDKs of 08 and 0.53Dh were presented. Each stimulus block
consisted of five trials. Each run contained 10 stimulus blocks
of 12 s, two blocks for one of five stimulus conditions. Stimu-
lus blocks were interleaved with 12 s fixation blocks. Prior to
the experiment, subjects practiced 10 staircases for each direc-
tion to get familiar with the experimental procedure.

Defining Regions of Interest

Retinotopic mapping of visual areas was performed
using standard phase-encoded methods developed by

Figure 1.

Stimuli and experimental protocol. (A) Schematic description of a two-alternative forced-choice

(2-AFC) trial in a QUEST staircase for measuring motion direction discrimination thresholds. (B)

Experimental protocol. Subjects underwent eight daily training sessions. The pre-training test

(Pre) and the post-training test 1 (Post1) and test 2 (Post2) took place on the days before,

immediately after, and 2 weeks after training.
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Sereno et al. [1995] and Engel et al. [1997], in which sub-
jects viewed a rotating wedge or an expanding ring that
created traveling waves of neural activity in visual cortex.
An independent run was performed to define the regions
of interest (ROIs) in areas V1, V2, V3, V3A, V4, MT, MST,
and IPS. The run contained eight moving dot blocks of
12 s, interleaved with stationary dot blocks of 12 s. The
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parameter, r is the standard deviation, and C is the
baseline.

Dynamic Causal Modeling

DCM, an approach for estimating effective strength of
synaptic connections among neuronal populations and their
context-dependent modulation, was performed to examine
whether there was any connectivity change between sen-
sory areas and decision-making areas after training. We
estimated the effective connectivities between IPS and two
visual areas MT and V3A using DCM in SPM10 [Friston,
2007]. For each area, time series from voxels within a 5-
mm-radius sphere centered on the most responsive voxel in
the localizer run were extracted for the DCM analysis in
both hemispheres. The estimated DCM parameters were
later averaged using the Bayesian model averaging method
[Friston, 2007]. The mean MNI coordinates of these voxels
and the SEs across subjects in MT, V3A, and IPS were
(41.08 6 1.1, 271.33 6 1.7, 4.25 6 1.2), (24.2 6 4.1, 286.9 6 1.2,

16.17 6 2.0), and (23.6 6 4.0, 261.2 6 2.5, 47.5 6 1.5) for
the right hemisphere; (–43.26 6 1.1, 269.54 6 2.0, 6.03 6

1.4), (–25.1 6 4.6, 287.4 6 1.0, 12.5 6 2.2) and (–21.6 6 4.1,
263.5 6 2.9, 47.7 6 1.9) for the left hemisphere.

DCM models neural population dynamics using a bilin-
ear model and a hemodynamic model [Friston et al., 2003].
The model consists of three sets of parameters: extrinsic
inputs into one or more regions, intrinsic connectivity
among the modeled regions, and parameters encoding the
modulation of the specified intrinsic connections by exper-
imental manipulations. FMRI data were modeled with a
GLM procedure, including regressors for the trained or
the untrained motion direction as the modulatory input
from MT/V3A to IPS, as well as a condition comprising
all the directions as the extrinsic input to MT/V3A (Fig.
7A). Bidirectional intrinsic connections were hypothesized
to exist between IPS and MT/V3A, and the strengths of
these connections were modulated by either the trained
or the untrained directions. For each subject, we examined
the modulatory effects in recurrent, feedforward, and feed-
back models. Using a hierarchical Bayesian approach, we

Figure 2.

Psychophysical results. (A) Learning curve. Motion direction dis-

crimination thresholds are plotted as a function of training day.

(B) Motion direction discrimination thresholds for the trained

direction (08) and the untrained directions (308, 608, and 908) at

Pre, Post1, and Post2. Asterisks indicate significant difference

between Pre and Post1, Post2 (***P< 0.001). (C) Percent

improvement in motion direction discrimination performance

for the trained and untrained directions at Post1 and Post2, rel-

ative to Pre. The asterisk indicates significant difference between

the trained and the untrained directions (***P< 0.001). Error

bars denote 1 SEM across subjects.
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computed the exceedance probability for each model, that
is, the probability to which a given model is more likely
than the other two models to have generated data from a
randomly selected subject. In the model with the highest
exceedance probability, we examined changes in the mod-
ulatory effects for either the trained or the untrained direc-
tions at Post1 and Post2, relative to Pre.

RESULTS

Psychophysical Results

Subjects underwent six daily training sessions (1,000 tri-
als per session) to perform motion direction discrimination
around a non-cardinal direction (Fig. 1A). Throughout the
training, subjects’ discrimination thresholds gradually
decreased and saturated after day 4 (Fig. 2A).

We compared their discrimination thresholds on the days
before (Pre), immediately after (Post1), and 2 weeks after
training (Post2) (Fig. 1B). Repeated-measures ANOVA
revealed a significant main effect of test (F(2, 26) 5 18.97,
P< 0.01) and a significant interaction between test and
direction (F(6, 78) 5 9.74, P< 0.01) (Fig. 2B). The percent
improvements for the trained direction were 34% at Post1

and 36% at Post2, which were significantly higher than those
for the untrained directions (<11%) (all t(13)> 4.20, P< 0.01)
(Fig. 2C). These results demonstrate that training induced
specific and persistent behavioral improvement for the
trained motion direction.

Univariate Amplitude Analysis of fMRI Data

FMRI data analyses were focused in eight ROIs, includ-
ing V1, V2, V3, V3A, V4, MT, MST, and IPS. With the uni-
variate amplitude analysis, we examined whether training
could lead to changes in the averaged BOLD amplitude
for the trained direction, compared with the untrained
directions. We found no significant main effect of test (all
F(2, 26)< 1.73, P> 0.19), and no significant interaction
between test and direction (all F(2, 26)< 1.08, P> 0.35) in
any of the eight ROIs (Fig. 3A).

The LMI (see Materials and Methods) was defined to
isolate the BOLD amplitude change specific to the trained
direction. An index significantly above/below zero indi-
cates that training increased/decreased the BOLD signal to
the trained direction. Consistent with the ANOVA results
above, no significant index was found in any ROI (Fig.
3B). Thus, no learning-specific effect was observed on the

Figure 3.

Results of the univariate analysis of fMRI data. (A) BOLD amplitudes for the trained and

untrained directions. (B) LMIs for BOLD amplitude. Error bars denote 1 SEM across subjects.

r Chen et al. r
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average BOLD amplitudes evoked by the trained and
untrained motion directions.

Multivariate Pattern Analysis of fMRI Data

We examined whether training led to specific improve-
ment in the decoding accuracy of the trained condition.
Decoding accuracies for 08 versus 308 (trained condition)
and 608 versus 908 (untrained condition) were submitted

to a repeated-measures ANOVA. While there was no sig-
nificant main effect of test in any ROI (all F(2, 26)< 0.79,
P> 0.46), we found a significant interaction between test
and direction in MT (F(2, 26) 5 6.07, P< 0.01) and IPS (F(2,
26) 5 4.70, P 5 0.02), suggesting specific learning effect on
the decoding accuracies for the trained compared to the
untrained conditions (Fig. 4A). MT exhibited a signifi-
cantly positive LMI at both Post1 (t(13) 5 2.25, P 5 0.04)
and Post2 (t(13) 5 3.81, P< 0.01) (Fig. 4B), demonstrating
that the improved decoding accuracy in MT persisted over

Figure 4.

Results of the multivariate pattern analysis of fMRI data. (A) Decoding accuracies for the trained

and untrained directions. (B) LMIs for decoding accuracy. Asterisks indicate the index signifi-

cantly above zero (*P< 0.05, **P< 0.01). (C) LMIs for decoding accuracy as a function of voxel

number in MT and IPS. Error bars denote 1 SEM across subjects.

r Motion Perceptual Learning in Noise r

r 6035 r



the long time course of the perceptual learning. Mean-
while, a higher-level cortical area IPS, has a significantly
positive index at Post2 (t(13) 5 2.38, P 5 0.03), indicating
an improved decoding accuracy in the decision-related
area in the late stage of perpetual learning.

To examine whether the finding depended on the num-
ber of selected voxels, the decoding performance was
tested on the most responsive voxels with a range from 10

http://wileyonlinelibrary.com


6.5%, 18.1%, and 75.4%, respectively, suggesting that the
modulatory effect by the untrained directions could also
be best explained by the recurrent model (Fig. 6D). How-
ever, little change was found in the modulatory effect of
the connections between MT/V3A and IPS (all t(13)< 1.55,
P> 0.14) (Fig. 6E).

Links Between the Behavioral Improvement and

Neural Changes

To evaluate the role of the neural changes revealed in
noisy motion perceptual learning, we calculated the corre-
lation coefficients between the behavioral improvement

and the neural changes (i.e., changes in the bandwidth of
pattern-based tuning in MT/IPS, and in connectivity
strength from MT to IPS) specific to the trained direction
across individual subjects. Significant correlations were
found between the performance change and the band-
width change in MT at both Post1 (r 5 0.73, P< 0.01) and
Post2 (r 5 0.60, P 5 0.02) (Fig. 7A,B). No significant correla-
tions were found between the performance change and
bandwidth change in IPS (Fig. 7C,D), or between the per-
formance change and connectivity change (Fig. 7E,F).
These results suggest the sharpening of the pattern-based
tuning functions in MT as the critical neural substrate
underlying the behavioral learning effect.

Figure 6.

Dynamic causal modeling of connectivities between V3A and IPS

and between MT and IPS. (A) Recurrent, feedforward, and feed-

back models for modeling the modulatory effect by the trained

or the untrained directions. (B) Exceedance probabilities for the

three models with the trained direction as the modulatory

input. (C) Changes in the modulatory effect by the trained

direction at Post1 and Post2, relative to Pre. (D) Exceedance

probabilities for the three models with the untrained directions

as the modulatory input. (E) Changes in the modulatory effect

by the untrained directions at Post1 and Post2, relative to Pre.

r Motion Perceptual Learning in Noise r
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DISCUSSION

We studied the neural mechanisms of perceptual learn-
ing, using motion direction discrimination training para-
digm with noisy stimuli. Behaviorally, training led to a
specific improvement in the trained direction and was
well preserved after 2 weeks. We found that motion

perceptual learning in noise (1) increased decoding accura-
cies in MT, (2) sharpened pattern-based tuning functions
in MT, which correlated with subjects’ behavioral
improvement, and (3) enhanced feedforward connectivity
from MT to IPS. In addition, there was an emergence of
increased neural decoding accuracy in IPS 2 weeks after
training.

Figure 7.

Correlations between the behavioral improvement and neural

changes specific to the trained motion direction at Post1 (A, C,

E) and Post2 (B, D, F). (A, B) Correlations between the behav-

ioral improvement and the bandwidth change in MT. (C, D) Cor-

relations between the behavioral improvement and the

bandwidth change in IPS. (E, F) Correlations between the behav-

ioral improvement and the connectivity change. The asterisk

indicates the significance level of the correlation coefficient at

Post1 (*P< 0.05, **P< 0.01).
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fundamental limit, noise exclusion is suggested to be the
major mechanism of perceptual learning [Dosher and Lu,
2005]. The specialization of MT in noisy motion processing
can be based on its large receptive field size [Albright,
1984]. During the spatial pooling of local motion, neurons
in MT operate to average out motion noise to extract the
global motion direction. In line with this hypothesis, a
recent electrophysiological study showed that motion learn-
ing in noise enhanced subjects’ spatial integration ability,
with a critical contribution of MT [Liu and Pack, 2017].
Compared to learning in a clear display, learning in noise
often induces neural changes in a higher-level cortical area,
subserved by its larger receptive field size and broader tun-
ing width. A similar effect has also been observed in orien-
tation learning—while training without noise altered neural
activities in V1 [Schoups et al., 2001], training in noise led
to changes in V4 [Adab and Vogels, 2011].

The current study used motion stimuli at a high speed,
which may not be optimal for psychophysical performance
or MT neurons [Lagae et al., 1993; Orban et al., 1985; Pilly
and Seitz, 2009; Seitz et al., 2008]. However, it is still within
the effective range of parameters to activate MT [Liu and
Newsome, 2003; van Essen and Maunsell, 1983; Rodman
and Albright, 1987]. One advantage of using non-optimal
stimuli is that the effect of learning could be more pro-
nounced with non-optimal stimuli—direction/orientation
discrimination learning leads to greater improvement in
non-cardinal than in cardinal directions/orientations [Ball
and Sekuler, 1987; Vogels and Orban, 1985]. In addition,
motion learning occurred even without motion perception
with sub-threshold motion stimuli [Watanabe et al., 2001].
These results suggest that learning can be triggered by non-
optimal stimuli, at both behavioral and cortical levels.

As the sensory signal of learned motion direction
became better represented in MT, the way in which sen-
sory signals were relayed to and weighted by decision-
making areas was also changed. DCM analysis demon-
strated an increase in the feedforward connectivity from
MT to IPS. Previously, we found that motion direction dis-
crimination training at 100% coherence enhanced feedfor-
ward connectivity from V3A to IPS [Chen et al., 2015].
Together with the electrophysiological findings showing
the involvement of macaque LIP in motion discrimination
training [Law and Gold, 2008], our results support the
idea that the learning process could be modeled as a high-
level decision unit refining its pooling from the most rele-
vant sensory neurons through response reweighting
[Dosher et al., 2013; Law and Gold, 2009].

The long-term neural substrate of perceptual learning is
another important, yet less addressed issue. Perceptual
learning is characterized by its persistency in the behav-
ioral improvement. Once learned, the visual performance
can be well maintained over months or years without
additional training [Bi et al., 2010; Karni and Sagi, 1993].
In this study, parallel to the behavioral improvement, we
found cortical changes immediately after training, in the

neural representation in MT and the connectivity from MT
to IPS. Two weeks after training, in addition to the exist-
ing changes, we discovered an emergence of enhanced
decoding accuracy in IPS. This result suggests that the
related cortical network may undergo adjustment over a
long-time course, even after training ended. These findings
extend our understanding of the learning-induced tempo-
ral dynamics within the sensory cortex [Chen and Fang,
2011; Molina-Luna et al., 2008; Yotsumoto et al., 2008],
indicating that the plasticity in sensory and high-level
stages might be triggered at successive time points during
the development of perceptual learning.

In comparison with motion learning in a clear display
[Chen et al., 2015], we found that motion perceptual learn-
ing in noise led to changes in a different cortical locus along
the visual dorsal pathway. These results suggest that learn-
ing induces changes in the sensory area based on the func-
tional specialization. Meanwhile, our findings revealed a
common neural mechanism underlying motion perceptual
learning. First, motion discrimination training with both
clear and noisy stimuli induced a refined neural representa-
tion in the visual cortex. Second, training enhanced cortico-
cortical communication between the sensory area with a
better representation for the trained visual feature and the
high-level decision unit. Third, the neural changes accu-
rately captured the specificity and persistency observed in
the behavioral learning effect. These findings indicate that
low-level and high-level processes work in cohort to opti-
mize the learned visual signal in a long-time course.
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