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Attention priority maps are topographic representations that are used for attention selection and guidance of task-related behavior
during visual processing. Previous studies have identified attention priority maps of simple artificial stimuli in multiple cortical and
subcortical areas, but investigating neural correlates of priority maps of natural stimuli is complicated by the complexity of their spatial
structure and the difficulty of behaviorally characterizing their priority map. To overcome these challenges, we reconstructed the topo-
graphic representations of upright/inverted face images from fMRI BOLD signals in human early visual areas primary visual cortex (V1)
and the extrastriate cortex (V2 and V3) based on a voxelwise population receptive field model. We characterized the priority map
behaviorally as the first saccadic eye movement pattern when subjects performed a face-matching task relative to the condition in which
subjects performed a phase-scrambled face-matching task. We found that the differential first saccadic eye movement pattern between
upright/inverted and scrambled faces could be predicted from the reconstructed topographic representations in V1-V3 in humans of
either sex. The coupling between the reconstructed representation and the eye movement pattern increased from V1 to V2/3 for the
upright faces, whereas no such effect was found for the inverted faces. Moreover, face inversion modulated the coupling in V2/3, but not
in V1. Our findings provide new evidence for priority maps of natural stimuli in early visual areas and extend traditional attention priority
map theories by revealing another critical factor that affects priority maps in extrastriate cortex in addition to physical salience and task
goal relevance: image configuration.
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Prominent theories of attention posit that attention sampling of visual information is mediated by a series of interacting topo-
graphic representations of visual space known as attention priority maps. Until now, neural evidence of attention priority maps
has been limited to studies involving simple artificial stimuli and much remains unknown about the neural correlates of priority
maps of natural stimuli. Here, we show that attention priority maps of face stimuli could be found in primary visual cortex (V1)
and the extrastriate cortex (V2 and V3). Moreover, representations in extrastriate visual areas are strongly modulated by image
configuration. These findings extend our understanding of attention priority maps significantly by showing that they are modu-
lated, not only by physical salience and task- goal relevance, but also by the configuration of stimuli images. j

ignificance Statement

expense of less relevant information. According to prominent
attention priority map theories (Fecteau and Munoz, 2006; Ser-

Introduction
In everyday life, our visual system is faced with the critical chal-

lenge of selecting the most relevant fraction of visual inputs at the
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ences and Yantis, 2006; Baluch and Itti, 2011), attention selection
is implemented via attention priority maps that signal which part
of the visual input should be granted prioritized access and guide
the ensuing task-related behavior. Previous studies have identi-
fied priority maps in multiple brain regions throughout the visual
processing hierarchy, including the frontal eye field (Serences
and Yantis, 2007), precentral sulcus (Jerde et al., 2012), lateral
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intraparietal cortex (Gottlieb et al., 1998; Bisley and Goldberg,
2003, 2010), and V4 (Mazer and Gallant, 2003). More recently,
seminal findings by Sprague and Serences (2013) showed that
priority maps could be found in early retinotopic areas outside of
the frontoparietal regions, including primary visual cortex (V1).
However, little is known about the attention priority represen-
tation of natural stimuli because previous studies usually used
artificial stimuli composed of simple features. Although several
pioneering studies have shown that visual search in real-world
scenes is achieved by matching incoming visual input to a top-
down category-based attentional “template,” an internal object
representation with target-diagnostic features (Peelen et al., 2009;
Peelen and Kastner, 2011, 2014; Seidl et al., 2012), so far, there is no
neural evidence of a topographic profile of attention priority distri-
bution over natural stimuli.

The fundamental theme of identifying neural correlates of
attention priority map is to examine the link between the topo-
graphic neural representation of visual stimuli and task-related
behavior that reflects the spatial pattern of attention priority (i.e.,
behavioral relevance). However, this is complicated in the case of
natural stimuli. First, natural stimuli are highly complex and in-
vestigating their topographic representation in the visual cortex is
therefore challenging, especially with human brain imaging
techniques. Second, it is difficult to characterize the priority
map of natural images behaviorally using psychophysical mea-
surements (e.g., contrast sensitivity). Further complicating
the matters is that visual processing of natural stimuli is often
influenced by image configuration. A well known example
is the face inversion effect: face recognition performance is
severely impaired by the inversion of the image (Yin, 1969;
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Stimuli and experimental protocol. A, Exemplar stimuli of three stimulus types. B, Protocol of the eye-tracking experiment. Subjects initiated a trial by fixating at the central fixation

point. The end point of the first fixation change after stimulus onset was recorded as the first saccadic target. €, Protocol of the fMRI experiment. Subjects performed a one-back image-matching task

with all three types of stimuli in different blocks of a run.

fined using a standard phase-encoded method (Engel et al., 1997) in
which subjects viewed a rotating wedge and an expanding ring that cre-
ated traveling waves of neural activity in visual cortex. An independent
block-design run was performed to identify ROIs in the retinotopic areas
responding to the stimulus region when subjects fixated at the central
fixation point. The run contained eight stimulus blocks of 12 s inter-
leaved with eight blank blocks of 12 s. The stimulus was a full-contrast
flickering checkerboard of the same size as the face images. Voxelwise
pRF model parameters were estimated using the method described in
Dumoulin and Wandell (2008). Specifically, the hemodynamic response
function (HRF) was measured for each subject in a separate run contain-
ing 12 trials. In each trial, a full-contrast flickering checkered disk with a
radius of 10.94° was presented for 2 s, followed by a 30 s blank interval.
The HRF was estimated by fitting the convolution of a 6-parameter
double-gamma function with a 2 s boxcar function to the BOLD re-
sponse elicited by the disk. Three pRF mapping runs were performed in
which a flickering full-contrast checkered bar swept through the entire
visual field. The bar moved through two orientations (vertical and hori-
zontal) in two opposite directions within a given run, giving a total of
four different stimulus configurations. The order of the stimulus config-
urations was randomized. The mapped visual area subtended 24.8° hor-
izontally and 22.8° vertically. The bar was 2.76° in width and its length
was either 24.8° or 22.8° (Fig. 2A). Each bar swept through the visual area

in 16 steps within 51 s. The step size was 1.38°. Each pRF mapping run
lasted for 204 s. Throughout the session, subjects performed a color
discrimination task at fixation point to maintain fixation and control
attention.

The second scanning session consisted of four block design runs. In
each run, there were 12 stimulus blocks of 12 s (four blocks for each
stimulus type) interleaved with 12 blank blocks of 12 s. In a stimulus
block, 16 images appeared. Each image was presented for 500 ms, fol-
lowed by a 250 ms blank interval. Subjects performed the same one-back-
matching task as that in the eye-tracking experiment. Throughout the
scanning session, subjects were required to fixate at the central fixation
point and refrain from any possible eye movements.

fMRI data were processed using BrainVoyager QX (Brain Innova-
tions) and custom scripts written in MATLAB (The MathWorks). The
anatomical volume in the first session was transformed into the AC-PC
space and then inflated using BrainVoyager QX. Functional volumes in
both sessions were preprocessed, including 3D motion correction, linear
trend removal, and high-pass filtering (cutoff frequency 0.015 Hz) using
BrainVoyager QX. Subjects with excessive head movement (>1.2 mm in
translation or >0.5° in rotation) within any fMRI session were excluded
(2 of 10 subjects). These functional volumes were then aligned to the
anatomical volume in the first scanning session and transformed into the
AC-PC space. The first 6 s of BOLD signals were discarded to minimize
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Figure 2.

pRF mapping. A, Stimuli used for pRF mapping. Blue arrows indicate the moving directions of the checkered bar in pRF mapping runs. Each bar moved in one direction and switched to

the opposite direction when it reached the boundary of the mapped area. B, Relationships between pRF size and pRF eccentricity in the whole (left), the upper (middle), and the lower (right) visual
field, respectively. The solid lines denote the linear fits relating the pRF eccentricity and the pRF size across subjects. SEs were estimated using a bootstrapped method (Kay et al., 2013), as indicated

by the shaded band around each line.

transient magnetic saturation effects. For each subject, a general linear
model (GLM) procedure was used to define the functional ROIs and to
measure the stimulus-evoked signal intensity for each stimulus type. The
ROIs in V1-V3 were defined as the cortical areas that responded more
strongly to the checkerboard than to the blank screen (p < 10 2, uncor-
rected). Stimulus-specific BOLD signal intensities in each ROI (i.e., B
value) were estimated for individual voxels, subtracted by the mean 8
value across all the voxels in the RO, and divided by the maximal abso-
lute. After this normalization step, the 3 values of all the voxels in the ROI
had a zero mean and a maximal absolute value of one. To facilitate the
comparison between the primary visual cortex (V1) and the extrastriate
cortex (V2 and V3), voxels in V2 and V3 were pooled together to equate
their number with the voxel number in V1.

pRF-based reconstruction. Reconstruction of the neural representa-
tions of the face images in early visual cortex involved two stages. In the
first stage, we estimated pRF model parameters for each voxel in all the
ROIs using the coarse-to-fine search method described in Dumoulin and
Wandell (2008). The predicted BOLD signal was calculated from the
known visual stimulus parameters, the HRF, and a model of the joint
receptive field of the underlying neuronal population. This model con-
sisted of a 2D Gaussian function with parameters X, Y, and o, where X,
and Y, are the coordinates of the center of the receptive field and o is its
spread (SD) or size. All parameters were stimulus referred and their units
were degrees of visual angle. Model parameters were adjusted to obtain
the best possible fit of the actual BOLD signal. Only the voxels for which
the pRF model could explain at least 10% of the variance of the raw data
were included for further analyses (Kok and de Lange, 2014). The pro-

portion of voxels retained after applying this threshold was high and was
comparable between the V1 and the V2/3 ROIs (mean proportion *
SEM V1:0.952 * 0.008, V2/3: 0.942 * 0.015).

In the second stage, parallel to the eye-tracking experiment, we used a
linear regression method to estimate the contribution of the baseline
effect (from the phase-scrambled images) to the BOLD signals evoked by
the upright and the inverted faces based on the responses of all voxels
within an ROI and then removed the contribution accordingly for indi-
vidual voxels (Kok and de Lange, 2014). Because this regression method
uses the data from all voxels in an ROI, compared with the subtraction
method, it provides a more robust estimate against outlier voxels and
thus improves the signal-to-noise ratio in the reconstructed representa-
tions. Specifically, the 8 values for the upright or the inverted faces were
submitted as the dependent variable, whereas the 3 values for the phase-
scrambled images were submitted as the independent variable of the
model as follows:

B j) = NiBscramviea,jy T Ci + Wi j), 1 € {Upright, Inverted}

where subscripts i and j refer to the stimulus type (upright or inverted
face) and voxel, respectively; C and r are the constant term (intercept)
and the regression coefficient (slope) of the model, respectively; and w is
the reconstruction weight, which represented the neural activity associ-
ated with the upright or inverted faces after removing potential visual
field and eccentricity biases. All matrices in the regression equation are
Nn-by-1, where n is the number of voxels included in the reconstruction
procedure in an ROL. Finally, the voxelwise pRF profiles were multiplied






on this model to the measured BOLD signal, the pRF position
and size parameters can be estimated for individual voxels, thus
providing a full characterization of the receptive field properties
of neuronal populations across the visual cortex.

Figure 2 shows the pRF estimation results. We fitted a line
relating pRF eccentricity with pRF size in V1 and V2/3 for the
whole, upper, and lower visual fields, respectively. Consistent with
previous findings (Dumoulin and Wandell, 2008), the pRF size
increased with the pRF eccentricity and the size increased faster in
V2/3 (slope k = 0.174, intercept b = 0.499) thanin V1 (k = 0.105,
b = 0.430). In addition, the relationship between pRF size and
eccentricity was very similar across the upper (V1: k = 0.106,b =
0.520; V2/3:k = 0.191,b = 0.609) and lower visual fields (V1: k =
0.103,b = 0.441; V2/3: k = 0.166, b = 0.550) with no significant
difference (Wilcoxon signed-rank test: V1 slope: p = 0.31; V1
intercept: p = 0.94; V2/3 slope: p = 0.20; V2/3 intercept: p =
0.55) (Fig. 2B), which would help to rule out potential visual field
representation difference explanations for our attention priority
map results.

For both the upright and the inverted faces, their cortical
representations were reconstructed as the sum of the Gaussians
weighted by the stimulus-specific activation level during the
image-matching task. It is clear that areas of high representation
intensity were mostly located in the image areas that convey im-
portant identity information. Behaviorally, these areas were also
the regions to which most first saccades were made (Fig. 3A).
Importantly, in both primary and extrastriate visual cortex, the
reconstructed representations were generally consistent with
the differential first saccadic target pattern for the upright and the

inverted faces. These observations suggest that the neural activity
patterns in retinotopic visual areas might contribute to the pat-
terns of attention-guided first saccadic eye movement.

We then examined quantitatively the behavioral relevance of
the reconstructed representations by measuring how well the re-
constructed representations could predict the differential first
saccadic target pattern using precision-recall curves. We defined
the high-priority areas based on the differential first saccadic tar-
get pattern and quantified the behavioral relevance as the area
under the precision-recall curves (Fig. 3B), where a larger AUC
indicates higher behavioral relevance. Results showed that, for
both the upright and inverted faces, AUCs corresponding to
the reconstructed representations in primary and extrastriate
visual cortex was significantly above chance level (V1 upright
face: AUC = 0.273, p = 0.001; V1 inverted face: AUC = 0.263,
p = 0.001; V2/3 upright face: AUC = 0.507, p < 0.001; V2/3
inverted face: AUC = 0.267, p = 0.002). We performed the same
analysis procedure using other criteria for defining the high-
priority areas (top 6% and top 4.5%; see Materials and Methods)
and obtained similar results [V1 upright face: AUC = 0.282,p =
0.001 (top 6%), AUC = 0.306, p < 0.001 (top 4.5%); V1 ipverted



Behavioral relevance of upright and inverted

face representations

In addition to their consistency with the differential first saccadic
target patterns, the reconstructed representations exhibited two
differences in behavioral relevance as a function of cortical region
and stimulus type. First, for the upright faces, the representation
in V2/3 was more topographically consistent with the first sacca-
dic target pattern than that in V1, whereas no such difference was
observed between V1 and V2/3 for the inverted faces. Second, in
V2/3, the representation of the upright faces was more topo-
graphically consistent with the differential first saccadic target
pattern than that of inverted faces, whereas in V1, the difference
between the upright and the inverted faces was less pronounced.
We therefore tested whether behavioral relevance differed be-
tween the V1 and V2/3 representations for both stimulus types
using the nonparametric bootstrapping method. We found that,
consistent with our observations, the V2/3 representation pre-
dicted the differential first saccadic target pattern better than the
V1 representation for the upright faces (p < 0.025). In contrast,
no significant difference between V1 and V2/3 was found for the
inverted faces (p = 0.51; Fig. 3C). These findings were robust
against difference in criterion for defining the high-priority areas
[V2/3 upright face AUC < V1 upright face AUC: p < 0.05 (top
6%), p < 0.05 (top 4.5%); V2/3 inverted face AUC < V1 inverted
face AUC: p = 0.47 (top 6%), p = 0.44 (top 4.5%); Figure 4]. The
upright face representation predicted the differential first sacca-
dic target pattern better than the inverted face representation in
V2/3 (p = 0.005), whereas no difference was found in V1 (



patterns during attention process, (2) a closer link between per-
ceptual behavior and neural activity patterns in higher visual
cortex, and (3) the interaction between higher- and lower-level
representations in the form of intercortical enhancement of be-
havioral relevance. Therefore, one promising interpretation of
our findings is that attention priority maps of natural stimuli
exist in both primary and extrastriate visual cortices. Our find-
ings of enhanced behavioral relevance of the reconstructed rep-
resentations in extrastriate visual cortex echo the earlier findings
by Sprague and Serences (2013). In their study, they reconstructed
the topographic representation of a



both primary and extrastriate visual cortices. We show that atten-
tion selection occurs, not only among multiple objects in a scene,
but also within a complex object by prioritizing diagnostic object
features. Moreover, we show that attention allocation is influ-
enced, not only by physical salience and task goal relevance, but
also by image configuration. Our findings contribute to filling the
long-existing blank of attention priority maps of natural stimuli
and make headway toward unraveling the mechanisms underly-
ing visual attention selection.
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