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Abstract

The framing effect refers the tendency to be risk-averse when options are presented positively but be risk-seeking when the
same options are presented negatively during decision-making. This effect has been found to be modulated by the sero-
tonin transporter gene (SLC6A4) and the catechol-o-methyltransferase gene (COMT) polymorphisms, which are on the
dopaminergic and serotonergic pathways and which are associated with affective processing. The current study aimed to
identify new genetic variations of genes on dopaminergic and serotonergic pathways that may contribute to individual dif-
ferences in the susceptibility to framing. Using genome-wide association data and the gene-based principal components re-
gression method, we examined genetic variations of 26 genes on the pathways in 1317 Chinese Han participants.
Consistent with previous studies, we found that the genetic variations of the SLC6A4 gene and the COMT gene were associ-
ated with the framing effect. More importantly, we demonstrated that the genetic variations of the aromatic-L-amino-acid
decarboxylase (DDC) gene, which is involved in the synthesis of both dopamine and serotonin, contributed to individual
differences in the susceptibility to framing. Our findings shed light on the understanding of the genetic basis of affective de-
cision-making.
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Introduction

During decision-making, individuals tend to be risk-averse
when options are presented in a positive way (i.e. the gain
frame) but be risk-seeking when the same options are presented
negatively (i.e. the loss frame), a phenomenon known as the
‘framing effect’ (Tversky and Kahneman, 1981; Kahneman and
Tversky, 1984; Kuhberger et al., 1999). This spontaneous bias is
observed across different cultures (Kahneman and Tversky,
1979; Sharp and Salter, 1997), and has profound influences on
important daily decisions, such as those related to finance, vot-
ing, and whether or not to undergo a certain surgery (McNeil
et al., 1982; Druckman, 2004).

Previous studies suggested that emotional arousal towards
the potential of loss plays an important role in the framing effect.
Specifically, psychophysiological evidence demonstrated that
choices in the loss frame are associated with more elevated skin
conductance responses than choices in the gain frame in normal
participants; this effect was absent for autistic participants with
emotional impairment (Hill et al., 2004; De Martino et al., 2008).
Neuroimaging studies revealed an increased activation of the
emotion system (e.g. the amygdala) when participants chose
risky options in the loss frame and safe options in the gain frame
(De Martino et al., 2006; Roiser et al., 2009; Xu et al., 2013; Gao et al.,
2016). Moreover, increased distress results in an increased fram-
ing effect (Druckman and McDermott, 2008), while reduced emo-
tional response via cognitive reappraisal decreases individuals’
susceptibility to framing (Miu and Crişan, 2011).

The susceptibility to framing in decision-making, which
varies substantially across individuals (Kahneman and Tversky,
1979; Sharp and Salter, 1997; De Martino et al., 2006; Roiser et al.,
2009; Gao et al., 2016), has moderate heritability (Simonson and
Sela, 2011; Cesarini et al., 2012; Cronqvist and Siegel, 2012), sug-
gesting that genetic variations contribute to the individual
differences. Although genetic studies on risk-taking have dem-
onstrated the important role of genetic variations on dopamin-
ergic and serotonergic pathways in decision-making under risks
(Crişan et al., 2009; Dreber et al., 2009; Kuhnen and Chiao, 2009;
He et al., 2010; Frydman et al., 2011; Heitland et al., 2012; Reuter
et al., 2013; Set et al., 2014), only a few studies investigated dir-
ectly the genetic basis of the susceptibility to framing in
decision-making. Two studies (Crişan et al., 2009, N¼ 36; Roiser
et al., 2009, N¼ 30) showed the association between 5-HTTLPR
variable number of tandem repeats variation, the genetic vari-
ation in the promoter region of the serotonin transporter gene
(SLC6A4), and individuals’ susceptibility to framing. Individuals
who are homozygous for the short (s) allele at the 5-HTTLPR are
more susceptible to framing than individuals who are homozy-
gous for the long (l) allele. Our recent work (N¼ 98) on dopamine
degradation gene COMT indicated that COMT Val158Met poly-
morphism is also associated with the individual differences in
susceptibility to framing. Compared with the Val/Val homozy-
gotes, the framing effect is more profound in the Met allele car-
riers, who have increased prefrontal dopamine concentrations
(Gao et al., 2016). However, given that complex molecular net-
works and cellular pathways contribute to individual differ-
ences in complex behaviors (Schadt, 2009; Wang et al., 2010),
variations in a few polymorphisms are unlikely to be the whole
story behind the genetic basis of susceptibility to framing. Here
we sought to further shed light on this genetic basis by investi-
gating variations in a set of genes on the dopaminergic and
serotonergic pathways.

Genetic variations related to dopamine metabolism and sig-
naling have been shown to be involved in emotional processing

and dysregulation (Meyer-Lindenberg, 2010; Opmeer et al., 2010;
Scharinger et al., 2010; Gadow et al., 2014). For example, the Met
allele of the COMT gene is associated with the negative bias in
affective processing, including decreased resilience in response
to negative mood states and increased anxiety levels and limbic
reactivity (e.g. amygdala) in response to unpleasant stimuli
(Ohara et al., 1998; Enoch et al., 2003; Schupp et al., 2003; McGrath
et al., 2004; Smolka et al., 2005; Drabant et al., 2006; Kia-Keating
et al., 2007; Olsson et al., 2007; Montag et al., 2008; Williams et al.,
2010; for a review, see Heinz and Smolka, 2006). Similarly, gen-
etic variations of the monoamine oxidase gene (MAOA and
MAOB) are key candidates in studies concerning the mechan-
isms of negative emotionality (Dlugos et al., 2009) and psychi-
atric disorders [e.g. major depression (Kersting et al., 2007; Roohi
et al., 2009)].

Genetic association studies also suggest the contribution of
gene variations in the serotonin system to affective processing
and psychiatric disorders (Meyer-Lindenberg, 2010; Scharinger
et al., 2010; Bevilacqua and Goldman, 2011; Fabbri et al., 2013;
Jonassen and Landrø, 2014). Specifically, relative to the homozy-
gous long variation (l/l), the short (s) allele of 5-HTTLPR exhibits
increased amygdala reactivity to negative environmental stim-
uli (Hariri et al., 2002; Canli et al., 2005; Heinz et al., 2005) and to
negative self-reflection (Ma et al., 2014); it is thus recognized as a
risk allele for affective disorders (Bellivier et al., 1998; Lotrich
and Pollock, 2004; Lasky-Su et al., 2005; Uher and McGuffin,
2010), although a meta-analysis suggested that the main effect
of 5-HTTLPR genotype and the interaction between 5-HTTLPR
and SLE on risk of depression are negligible (Munaf�o et al., 2009).
Moreover, a gene involved in the synthesis of both dopamine
and serotonin, the aromatic-L-amino-acid decarboxylase gene
(DDC), is associated with affective disorders, including anxiety
state (Costas et al., 2010) and bipolar disorder (Børglum et al.,
2003).

Considering both the key role of affective processing in the
framing effect and the association between emotional process-
ing and genetic variations on dopaminergic and serotonergic
pathways, genes on these two pathways are possible contribu-
tors to the individual differences in susceptibility to framing. In
the current study, by applying the gene-based principal compo-
nents regression (PCReg) approach (Wang and Abbott, 2008;
Hibar et al., 2011a, b) and pathway-based approach (Wang et al.,
2007; Wang et al., 2010) to genome-wide association (GWA) data,
we sought to find new genes that contribute to the susceptibility
to framing in decision-making. To this end, 26 genes were se-
lected from dopaminergic and serotonergic pathways and sub-
jected to analysis. All genes were selected according to
dopaminergic pathway and serotonergic pathway maps in
KEGG database (http://www.genome.jp/kegg/), a manually cura-
ted collection of pathway maps widely used in gene-set analysis
(e.g. Nemoda et al., 2011; Set et al., 2014; Baou et al., 2016). Genes
that are lack of expression in the brain were excluded in the cur-
rent study.

Given the availability of densely spaced single nucleotide
polymorphisms (SNPs) within a gene in GWA data, the trad-
itional SNP-based approach suffers from the collinearity arisen
from linkage disequilibrium (LD) among SNPs (Wang and
Abbott, 2008) and lacks the power to uncover the relatively
small effect sizes conferred by most genetic variations (Wang
et al., 2010). To address these issues, the gene-based PCReg
method takes into account the common variation within a can-
didate gene jointly by using a few uncorrelated principal com-
ponents (PCs) computed from the sample covariance matrix of
all SNPs (Neale and Sham, 2004; Wang and Abbott, 2008). This
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approach reduces dimensionality of the genetic information
and the number of tests, which in turn helps to reduce the prob-
lem of chance findings (i.e. false positives) due to multiple test-
ing (Neale and Sham, 2004; Klei et al., 2008; Wang and Abbott,
2008). Compared with the SNP-based approach, the gene-based
approach is more efficient when there is weak but coordinated
effects arising from multiple SNP markers (Wang et al., 2010; Set
et al., 2014) and has been widely used in behavioral genetic and
neuroimaging studies (Wang and Abbott, 2008; Hibar et al.,
2011a,b).

Materials and methods
Participants

Participants were all incoming freshman (Grade 2013) at
Chongqing University of Medical Sciences, China, and were re-
cruited from the freshman seminar as they arrived at
university. One thousand five hundred and eighty-two
unrelated Chinese Han students (80.1% females, mean age
18.66 6 0.90 years) were recruited. Participants were divided into
15 cohorts. About 100 participants in the same cohort came to a
testing room at the same time, completed the behavioral task
on computers and submitted their data to the server. Two hun-
dred and sixty-five of them were excluded from data analysis
because of their low accuracy in the catch condition in which
they were expected to choose the option with an expected value
much higher than the other option, indicating a high probability
that they did not actively engage in the task (see the later behav-
ioral test; De Martino et al., 2006; Gao et al., 2016). In all the 1582
participants, 5 participants reported a history of psychiatric,
neurological or cognitive disorders in the self-reported ques-
tionnaire. These five persons also performed badly in the catch
condition and were hence excluded.

A final sample of 1317 participants was included in the follow-
ing analysis. None of the participants reported any history of psy-
chiatric, neurological or cognitive disorders in the self-reported
questionnaire (see Supplementary data for more details about
the self-reported questionnaire). All of them were in the normal
range of anxiety symptoms (i.e. scores<50, mean¼ 30.58,
SD¼ 5.35) as assessed by the Zung Self-Rating Anxiety Scale
(Zung, 1971; Wang et al., 1999) and in the normal range of depres-
sive symptoms (i.e. scores<50, mean¼ 33.3, SD¼ 6.31) as as-
sessed by the Zung Self-Rating Depression Scale (Zung, 1965;
Wang et al., 1999), except for nine participants who had higher
scores (51, 51, 53, 53, 53, 54, 54, 55 and 59, respectively) beyond
the normal range of depressive symptoms and three participants
who had higher scores (51, 51 and 56, respectively) beyond the
normal range of anxiety symptoms. Given that excluding these
12 participants did not change the pattern of results, we included
them in the following reported data analysis. Written informed
consents were obtained from each participant. This study was
performed in accordance with the Declaration of Helsinki and
was approved by the Ethics Committee of the School of
Psychological and Cognitive Sciences, Peking University.

The behavioral test

We used the same behavioral task in Gao et al. (2016), which is
developed by De Martino et al (2006) and has been used to assess
the framing effect (Roiser et al., 2009; Xu et al., 2013). At the be-
ginning of each trial, participants were endowed with an initial
amount of monetary reward. Then they chose between receiv-
ing a certain guaranteed amount of money from the initial

amount (i.e. the sure option) and taking a risky option that
could enable them, with a certain probability, to receive all or
none of the initial amount (i.e. the risky or gamble option). The
sure option was formulated as either money retained from the
initial amount (i.e. the gain frame) (e.g. ‘Keep ¥ 20 out of a total
of ¥ 50’) or as money lost from the initial amount (i.e. the loss
frame) (e.g. ‘Lose ¥ 30 out of a total of ¥ 50’), presented in words.
The gamble option was identical for both frames and was repre-
sented by a pie chart indicating the probability to receive all or
none of the initial amount in the current trial. For both the gain
frame and loss frame trials, the expected values of the two op-
tions in each trial were equivalent. For catch trials, the expected
values of the sure option and the gamble option were extremely
unbalanced (e.g. ‘Keep ¥80 out of a total of ¥100’ vs ‘Keep all of
the ¥100 with a probability of 40%’). These trials were intro-
duced to allow us to examine whether a particular participant
was actively engaged in the task. The behavioral test consisted
of three sessions. Trial settings were the same for three ses-
sions. Each session had 48 trials (16 different gain trials, 16 dif-
ferent loss trials and 16 different catch trials), ordered
randomly. The payment procedure was conducted according to
De Martino et al. (2006). The participants were informed that
they were playing for real money at all times so their task was
to be attending through the entire experiment which would
allow them to maximize their final scores. At the end of the ex-
periment they would receive a sum proportional (500:1) to what
they earned during the experiment. See Gao et al. (2016) for
more details about the behavioral test.

Two hundred and sixty-five participants were excluded from
data analysis because of their low accuracy (<75%, mean accur-
acy¼57.9%617.6%; other 1317 participants’ accuracy¼ 90.5%66.5%)
in the catch condition. The excluded participants also showed
much smaller framing effect (4.44%61.75%) compared with the re-
maining 1317 participants (14.51%60.34%), t(1580)¼ 9.16, P< 0.001.
Furthermore, we examined their response times when making
choices (using a computer mouse to click on one of the two options
presented on the screen). These participants responded faster when
making decisions in both catch trials (mean¼ 1591 ms, SD¼ 551ms)
and experimental trials (mean¼ 1601ms, SD¼ 544ms) compared
with the other participants (mean¼ 1776 ms, SD¼ 353 ms; mean-
¼ 1872 ms, SD¼ 376ms), t(1580)¼ 6.639, P< 0.001 for catch trials and
t(1580)¼ 9.375, P< 0.001 for experimental trials, indicating that these
participants were careless when facing choices.

Genotyping

We collected ethylenediaminetetraacetic acid anti-coagulated
venous blood samples from all the participants and then ex-
tracted genomic DNA from their whole blood using the
QuickGene-610L Nucleic Acid Isolation System. The whole-
genome genotyping was performed on Illumina Human
OmniZhongHua-8 version 1 Chips using the standard Illumina
genotyping protocol.

Gene selection and preprocessing

Twenty-six genes were selected based on the Kyoto
Encyclopedia of Genes and Genomes database (KEGG; http://
www.genome.jp/kegg/). We included dopamine genes
involved in (i) dopamine synthesis [tyrosine hydroxylase (TH),
aromatic-L-amino-acid decarboxylase gene (DDC), and vesicu-
lar monoamine transporter (VMAT2)], (ii) coding of dopamine
receptors (DRD1–5), and (iii) dopamine transport and clearance
[sodium-dependent dopamine transporter (DAT1, also named
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SLC6A3), catechol-O-methyl transferase (COMT), amine oxi-
dase A (MAOA) and amine oxidase B (MAOB)] (see also,
Nemoda et al., 2011; Set et al., 2014) and serotonin genes
involved in (i) serotonin biosynthesis [tryptophan 5-hydroxy-
lase (TPH 1 and TPH2)], (ii) coding of serotonin receptors [5-
hydroxytryptamine receptor (HTR1A/B/D/E/F, HTR2A/B/C,
HTR3A/B/C/D/E, HTR4, HTR5A/B, HTR6-7, HTRA1-4)], (iii) sero-
tonin transport [sodium-dependent serotonin transporter
(SLC6A4)] (see also Baou et al., 2016) (Figure 1). HTR3D and
HTR3E genes were excluded from data analysis due to their
lack of expression in the brain (Niesler et al., 2003; see also
Bgee: Gene Expression Evolution, http://bgee.unil.ch/). DRD4,
DRD5, HTR1A/B/D/F, HTR5B, HTRA2 and HTRA4 were also
excluded from the final analysis due to the failure of extracting
SNPs in the sample.

Preprocessing of GWA data was conducted in the following
standard steps using PLINK (Purcell et al., 2007; Set et al., 2014):
(i) we removed poorly genotyped SNPs, which were significantly
depart from the HWE at a threshold of 10�4 or with minor allele
frequency (MAF) below 0.1 or with genotyping rate below 0.05;
(ii) we filtered out poor genotyped individuals with genotyping
rate below 0.05 and (iii) we estimated population stratification
and generated components of population stratification. To ad-
just for population stratification, two components indicating
population stratification generated from the whole GWA data
using the classical multidimensional scaling (MDS) method im-
plemented in PLINK (Price et al., 2006; Purcell et al., 2007) were
controlled in the following analysis. SNP extraction and filtering
were conducted using PLINK (Purcell et al., 2007) and snpStats
(Solé et al., 2006). For each gene, common SNPs were extracted
according to hg19 coordinates.

Principle component analysis

All the following data analyses were conducted using R (The R
Project for Statistical Computing, http://www.r-project.org).
To avoid the collinearity arising from LD among SNPs of the
same gene in the statistical model and reduce dimensionality of
the genetic information, for each gene, we took all available
SNPs in the GWA dataset and performed principal component
analysis (PCA) on the SNPs within this gene to account for cor-
relations due to LD (Wang and Abbott, 2008). Specifically, in the
current study, each analyzed gene was represented by a set of
eigenSNPs (PCs) accounting for at least 90% of the total variation
of SNPs in this gene (Wang and Abbott, 2008; Set et al., 2014).
The stronger the correlations between the SNP genotype scores
(indicating the stronger the extent of LD among the SNPs), the
fewer PCs are needed to capture the major variance in the ori-
ginal genotype scores. Consistent with densely spaced SNPs
being in LD (Daly et al., 2001; Reich et al., 2001; Gabriel et al.,
2002), SNPs within a gene were highly correlated (Table 1). For
example, 6 eigenSNPs explained 90.2% of the variation of the
DDC gene that contained 47 SNPs in our GWA dataset.

Gene-behavior association analysis

To test the joint effect of all variations in one gene on the sus-
ceptibility to framing, we employed a series of multiple partial-F
tests with the susceptibility to framing (i.e. the rate of taking the
gamble option in the loss frame minus this rate in the gain
frame) as the dependent variable following the steps illustrated
by previous studies (Wang and Abbott, 2008; Hibar et al.,
2011a,b). Multiple partial-F tests are well suited for testing the
effects of multiple predictors on a dependent variable. For each

Fig. 1. Dopaminergic pathway genes and serotonergic pathway genes. Dopaminergic pathway genes (A) and serotonergic pathway genes (B) are represented in a styl-

ized version of the synapse and include dopamine genes directly involved in synthesis (green), uptake (blue), and metabolism (yellow) and receptors (pink). Certain de-

tails, such as presynaptic auto-receptors, have been omitted for clarity. Adapted from the maps of dopaminergic synapse and serotonergic synapse in the Kyoto

Encyclopedia of Genes and Genomes database (KEGG; http://www.genome.jp/kegg/); see also, Set et al., 2014.
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gene, the multiple partial-F test was conducted by firstly esti-
mating the fit of a ‘reduced model’ of age, gender, and two com-
ponents of population stratification (nuisance variables) on
individuals’ susceptibility to framing. Secondly, we estimated
the fit of a second ‘full model’ with the nuisance variables and
eigenSNPs of this gene (see the section Principle component ana-
lysis) on the same dependent variable. Each association test re-
sults in an F statistic, which indicates the joint effect of
eigenSNPs of this gene on the behavior after controlling for the
effects of age, gender and two components of population
stratification. The multiple partial-F statistic was calculated for
each gene using equation (1) (Hibar et al., 2011b). k is
df(full)� df(reduced) and RSS is the residual sum of squares:

Fk; df fullð Þ ¼ RSSðreducedÞ � RSSðfullÞ
df ðreducedÞ � df ðfullÞ =

RSSðfullÞ
df ðfullÞ (1)

Of note, because the MAOA/B genes reside on the X-chromo-
some, females and males were analyzed separately to investi-
gate the gene-behavior associations for these two genes.

Critically for our goal of identifying dopaminergic and sero-
tonergic genes that are associated with the susceptibility to
framing, variations across genes were essentially uncorrelated
as shown by the very small proportion of variance explained by
the other gene in the canonical correlation analysis (Weenink,
2003), mean variance explained by other gene¼ 0.62% 6 0.08%
(SE) (see Table S1). Additionally, to examine the unique contri-
bution of each gene to behavior while controlling for the contri-
butions of other significant genes, we built a new regression
model for each of the four genes that were identified to be

associated with framing effect (COMT, SLC6A, DDC and MAOB;
see Gene-behavior association results for details). The new regres-
sion model included age, gender, two components of population
stratification, as well as the eigenSNPs of the other three identi-
fied genes as nuisance variables. Controlling for the contribu-
tions of the other genes associated with the framing effect did
not change the pattern of results (COMT: P¼ 0.028, SLC6A4:
P¼ 0.038, DDC: P¼ 0.070 for all the participants, and MAOB:
P¼ 0.029 for male participants), demonstrating the unique con-
tribution of each gene to behavior.

Permutation tests

To guard against spurious associations and to further validate
the above findings, we conducted the Monte Carlo permutation
tests for each regression model (Hibar et al., 2011b; Set et al., 2014).
This method is a widely accepted correction approach in statis-
tical testing (Belmonte and Yurgelun-Todd, 2001; Nakagawa,
2004; Camargo et al., 2008; Gomez-Villegas et al., 2014), which
resamples the total number of observations for certain times in
order to estimate the regression coefficient in each shuffled sam-
ple and the probability of the estimated regression coefficients
being greater than the observed regression coefficient (i.e. permu-
tation P). This approach includes irregularities of the data in the
estimation of the permutation probability (Cheverud, 2001).

Empirical tests

To guard against the possibility that the associations do not rise
above the background association compared with the genome

Table 1. Summary of dopamine and serotonin genes and regression analysis

Pathway Function Gene SNPs PCs %Var R2 change Adjusted R2 change Partial-F punc pperm pemp

Dopamine Synthesis TH 2 2 100 0.001 <0.001 0.712 0.491 0.484 0.485
DDC 47 6 90 0.010 0.006 2.329 0.031* 0.031* 0.038*
VMAT2 17 9 90 0.003 <0.001 0.501 0.875 0.878 0.862

Transport/ DAT1 16 6 91 0.005 <0.001 1.027 0.406 0.408 0.466
Clearance COMT 18 6 91 0.012 0.009 2.648 0.015* 0.014* 0.027*

MAOA 6 3 90 0.003 <0.001 1.143 0.331 0.325 0.346
MAOB 37 5 92 0.005 0.002 1.367 0.234 0.232 0.293

Receptor DRD1 1 1 100 0.000 <0.001 0.097 0.756 0.756 0.780
DRD2 16 8 90 0.004 <0.001 0.721 0.673 0.680 0.770
DRD3 41 12 92 0.014 0.006 1.617 0.081 0.081 0.099

Serotonin Synthesis TPH1 2 2 100 0.001 <0.001 0.719 0.487 0.476 0.477
TPH2 6 4 93 0.002 <0.001 0.519 0.721 0.718 0.753

Transporter SLC6A4 8 3 90 0.006 0.004 2.795 0.039* 0.038* 0.037*
Receptor HTR1E 16 6 91 0.007 0.003 1.545 0.160 0.158 0.199

HTR2A 44 12 90 0.013 0.005 1.492 0.120 0.121 0.123
HTR2B 3 2 100 0.001 <0.001 0.596 0.551 0.551 0.519
HTR2C 22 8 90 0.006 <0.001 0.920 0.499 0.499 0.517
HTR3A 4 4 100 0.001 <0.001 0.364 0.834 0.831 0.833
HTR3B 22 6 90 0.001 <0.001 0.228 0.968 0.967 0.970
HTR3C 2 1 99 0.000 <0.001 0.124 0.725 0.724 0.677
HTR4 46 14 91 0.015 0.005 1.422 0.135 0.136 0.075
HTR5A 7 4 92 0.006 0.003 1.866 0.114 0.114 0.118
HTR6 2 1 100 0.000 <0.001 0.000 0.990 0.992 0.982
HTR7 22 6 93 0.006 0.002 1.316 0.247 0.242 0.301
HTRA1 34 9 91 0.007 <0.001 0.974 0.460 0.456 0.441
HTRA3 19 5 92 0.004 0.001 1.133 0.341 0.356 0.370

PCs, the number of principal components; % Var, percentage of total variance captured by included PCs; punc, P value using multiple F-test; pperm, permutation P value;

pemp, empirical P value.

*Means P<0.05.
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at large, we compared P values in multiple partial-F tests of the
genes on the dopaminergic and serotonergic pathways to com-
parable genes in the GWA dataset to generate an ‘empirical’
null distribution (Set et al., 2014). Empirical p values were deter-
mined by comparing across the entire genome. A gene was con-
sidered comparable if (i) its SNPs generated the same number of
principal components according to the procedure outlined
above and (ii) it was represented by the same or similar number
of SNPs. A range of SNPs was allowed to generate at least one
hundred comparable genes, since an exact match produced too
few comparable genes (see Supplementary Table S2). This typic-
ally occurred when there were a large number of SNPs within
the gene.

Protein–protein interactions

Knowledge about a protein’s specific interaction map is an im-
portant prerequisite for a full understanding of its function.
Here we used the STRING 10 (Search Tool for the Retrieval of
Interacting Genes/Proteins) database (http://string-db.org,
Szklarczyk et al., 2015) to test the interactions between the pro-
teins encoded by all the dopaminergic genes and serotonergic
genes included in the current study. This database aims to pro-
vide a critical assessment and integration of protein–protein
interactions, including direct (physical) as well as indirect (func-
tional) associations, and generates an interaction confidence
score for each interaction using four resources, including gen-
omic context, high-throughput experiments, co-expression
data, and previous studies.

Note, cellular functions are carried out by ‘modules’ made
up of many species of interacting molecules (Hartwell et al.,
1999; Rives and Galitski, 2003). It is known that proteins of simi-
lar cellular functions tend to lie within a short distance in the
interaction graph (Brun et al., 2004). Thus, searching for
interaction-modules may help us understand the relationship
between the organization of a protein network and its function
and thus provide independent evidence for the joint contribu-
tion of genes to a certain behavior. Using the ‘Clustering’ func-
tion implemented in STRING 10, we performed the MCL
algorithm (inflation¼ 4), which is a widely used algorithm in
clustering analysis (http://www.micans.org/mcl/, Brohee and
Van Helden, 2006), to extract functional modules in our inter-
action graph (see Supplementary Figure S1).

SNP–SNP interactions

To estimate SNP–SNP interactions, we extended the eigenSNP
approach by performing PCA on the set of regressors produced
from a third-order interaction of the underlying SNP data. For
example, if a gene contained three SNPs, we performed PCA on
the set of seven regressors, resulting from three original SNPs,
an additional three second-order interaction terms, and a fur-
ther additional one third-order interaction term. Using the
same procedure as outlined above, we took the set of eigenSNPs
that explained at least 90% of the variance and included the
concerning interaction terms in our computational model (see
Supplementary Table S3).

Results
Behavioral results

Consistent with previous studies (De Martino et al., 2006; Roiser
et al., 2009; Xu et al., 2013; Gao et al., 2016), a significant framing
effect was observed for the rate of taking the risky or gamble

options: 59.75%60.47% (SE) in the loss frame vs 45.23% 6 0.46%
in gain the frame, t(1316)¼ 42.08, P< 0.0001. The risk attitude
change (i.e. the rate of taking the gamble option in the loss
frame minus this rate in the gain frame) was defined as an indi-
vidual’s susceptibility to framing in the following analysis. In
line with previous studies (Fagley and Miller, 1990; Huang and
Wang, 2010), a 2 (gender: Female vs Male)� 2 (frame: gain vs
loss) mixed measures analysis of variance (ANOVA) on the gam-
bling rate revealed a significant interaction between gender and
frame both before and after controlling for the potential effects
of age, F(1, 1315)¼ 15.587, P< 0.001, and F(1, 1314)¼ 14.701, P< 0.001,
with female participants evidencing a greater framing effect
than male participants. In addition, when controlling for gen-
der, linear regression analysis showed a marginally negative
correlation between age and individuals’ susceptibility to fram-
ing, b¼ -0.052, t¼ -1.903, P¼ 0.057. This pattern was consistent
with previous developmental studies (Mikels and Reed, 2009;
Strough et al., 2011). To exclude the effects of gender and age,
these two factors were controlled as covariates in the analysis
of gene-behavior association.

Gene-behavior association results

Consistent with our recent study showing the association be-
tween the COMT gene and the susceptibility to framing (Gao
et al., 2016), the regression analysis controlling for age, gender,
and two principle components of population stratification indi-
cated that eigenSNPs of the COMT gene explained 0.9% of the
variance in individuals’ susceptibility to framing, adjusted R2

change¼ 0.009, partial-F¼ 2.648, P¼ 0.015. Moreover, in line
with Roiser et al. (2009) which demonstrated that 5-HTTLPR con-
tributes to the individual differences, the entry of the eigenSNPs
of the SLC6A4 gene accounted for 0.4% of the variance, adjusted
R2 change¼ 0.004, partial-F¼ 2.795, P¼ 0.039. Importantly, our
results provide new evidence indicating that the DDC gene,
which is involved in the synthesis of both serotonin and dopa-
mine, was associated with individuals’ susceptibility to framing,
adjusted R2 change¼ 0.006, partial-F¼ 2.329, P¼ 0.031, account-
ing for 0.6% of the variance. None of the other genes were found
to be predictive of the susceptibility to framing in decision-
making in our sample (Table 1).

To guard against spurious associations, we conducted per-
mutation tests for each regression model. After the Monte Carlo
permutation test with 10 000 permutations of the behavioral
data (individuals’ susceptibility to framing), the above results
remained significant (Table 1), COMT: permutation P¼ 0.014,
SLC6A4: permutation P¼ 0.038, DDC: permutation P¼ 0.031.
Given that permutation test was conducted independently for
each gene, it did not correct for multiple testing directly. Of
note, the results obtained from the regression analyses did not
survive the Bonferroni or false discovery rate (FDR) corrections
for multiple testing (but see Discussion).

To test for the possibility that our evidence of association
did not rise above the background association compared with
the genome at large, we compared the fit of models between
genes in the dopaminergic pathway and serotonergic pathway
and other genes in the GWA dataset to generate an ‘empirical’
null distribution. Despite varying sizes of the comparison gene
sets (see Supplementary Table S1), we found that, against the
empirical null distributions, all the three genes showed signifi-
cant differences (Table 1), COMT: empirical P¼ 0.027, SLC6A4:
empirical P¼ 0.037, DDC: empirical P¼ 0.038.

Because the MAOA/B genes reside on the X-chromosome,
there is substantial uncertainty regarding the interpretation of
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allele scores across sex. Thus we estimated the model for these
two genes in male and female participants separately. Results
showed that the MAOB gene was associated with the suscepti-
bility to framing in male participants, which accounted for 2.8%
of the variation in male participants, adjusted R2 change¼ 0.028,
partial-F¼ 2.499, P¼ 0.031. The pattern remained the same in
permutation test (P¼ 0.038) and empirical test (P¼ 0.043). This
effect was absent in female participants. No effect was observed
for the MAOA gene.

To address the question of whether there existed variations
that could be explained by SNP–SNP interactions, we conducted
PCA on regressors generated from first-order, second-order, and
third-order interactions of SNPs within a gene. However, we
found that incorporating SNP–SNP interactions did not improve
model fittings of genes. The effects of the DDC gene and the
SLC6A4 gene were similar to the results in single SNP analysis,
while the effects of the COMT gene and the MAOB gene in single
SNP analysis were now abolished. We did not find that the pre-
viously insignificant genes became significant after accounting
for SNP–SNP interactions either (see Supplementary Table S3).

Using the STRING database to test the interactions between
the proteins encoded by all genes included in our data analysis
and extract functional modules in our interaction graph, we
found that the four genes (COMT, SLC6A4, DDC and MAOB) asso-
ciated with the susceptibility to framing in the current study
were shown to interact with each other and were clustered into
the same module (see Supplementary Figure S1).

Given the PCA analysis here did not allow us to identify
which SNPs constituted the principal components that contrib-
uted to the framing effect (Harris, 1975), we examined directly
how identified gene-behavior associations were distributed
across SNPs in the identified genes. SNPs associated with indi-
vidual susceptibility to framing are shown in Figure S2
(Supplementary data). For the COMT gene, although rs4680 did
not significantly contribute to the framing effect, a SNP in LD
with rs4680, rs165656 (1000Genomes, phase_3, Han Chine75.1(t31410 Tr1J
0 -1.406 TD
Beijami,nc)--337.4(Chanc)--320.(CHB):he2º93499, 2 ¼
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amygdala coupling, it is conceivable that genetic variations in
the DDC gene and the MAOB gene may modulate the individual
differences in susceptibility to framing via their impacts on the
PFC-amygdala circuitry. This hypothesis needs to be tested by
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