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Abstract

Background and aims: Non-invasive brain stimulation has shown potential in clinical
applications aiming at reducing craving and consumption levels in individuals with drug
addiction or overeating behaviour. However, it is unclear whether these intervention
effects are maintained over time. This study aimed to measure the immediate, short- and
long-term effects of excitatory transcranial direct current stimulation (tDCS) and high-
frequency repetitive transcranial magnetic stimulation (rTMS) targeting at dorsolateral
prefrontal cortex (dIPFC) in people with drug addiction or overeating.

Methods: A systematic review and random effects meta-analysis. We included 20 articles
(total of 22 studies using randomized controlled trials: 3 alcohol dependence, 3 drug
dependence, 12 smoking, 4 overeating; total: 720 participants) from January 2000 to
June 2020, which reported at least one follow-up assessment of craving, consumption or
abstinence levels after the intervention. We compared effects of active versus sham
stimulation immediately after the intervention and at the last follow-up assessment, as
compared with baseline.

Results: Excitatory neuromodulation of dIPFC activity reduced craving and consumption
immediately after the intervention (craving: g = 0.734, Cl = 0.447-1.021, P < 0.001; con-
sumption: g = 0.527, Cl = 0.309-0.745; P < 0.001), as well as during short-, mid- and
long-term abstinence (craving: g = 0.677, Cl = 0.440-0.914, P < 0.001; consumption:
g =0.445, Cl = 0.245-0.645, P < 0.001; abstinence levels: g = 0.698, Cl = 0.433-0.963,
P < 0.001; average time of follow-up: 84 + 83 days after last stimulation). Additional
analysis demonstrated that the intervention effects were sustained in all populations
studied (food, nicotine, alcohol or drug abuse) and with both stimulation techniques used
(rTMS, tDCS). Interventions targeting at the left (vs right) hemisphere may be more
effective.

Conclusions: Excitatory neuromodulation targeting the dorsolateral prefrontal cortex
appears to lead to a sustained reduction of craving and consumption in individuals with

addiction or overeating behaviour.
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INTRODUCTION

Drug addiction (e.g. illegal drugs, nicotine or alcohol) and obesity
cause serious long-term harms to people’s health. According to the
United Nations Office on Drugs and Crime (UNODC) and World
Health Organization (WHO) reports, there were 269 million illegal
drug users [1] and 1.3 billion nicotine users around the world in 2018
[2]. Moreover, 3 million deaths every year resulted from harmful use
of alcohol [3] and nearly 2 billion adults worldwide were overweight
in 2016 [4]. In recent years, there is a growing interest in using non-
invasive brain stimulation as a novel treatment option for drug addic-
tion and overeating behaviour. The primary goal of these therapeutic
interventions is to reduce consumption to less harmful levels or even
stop consumption (i.e. achieving abstinence) of a specific substance
[5] or overeating of palatable food [6].

Neuromodulation interventions in individuals with drug addiction
and overeating behaviour have most often targeted dorsolateral pre-
frontal cortex (dIPFC) [7], because alterations in dIPFC function in
these populations have been linked to a failure to exert cognitive con-
trol over drug/food intake [6,8-15]. At the core of this impairment
seems to be a failure to inhibit cravings (i.e. intensive desire or urge to
consume) and to self-regulate consumption in the presence of the
substances/food or when facing associated cues [6,9-12,16,17]. The
two types of non-invasive brain stimulation techniques that have
been most widely used for neuromodulation interventions in these
populations are repetitive transcranial magnetic stimulation (rTMS)
and transcranial direct current stimulation (tDCS) [5,18]. Conventional
rTMS uses a figure of eight formed coil to generate brief focal electro-
magnetic pulses that penetrate the skull to stimulate specific brain
regions (up to 1.5 cm below the skull). In contrast, a newer form of
rTMS, deep rTMS [19], uses an H-coil to stimulate both surface corti-
cal and deeper subcortical brain tissue (up to 4.5-5.5 cm from the
skull). For both types of rTMS, high frequency (no less than 5 HZ) pro-
vides excitatory stimulation that increases neuronal excitability of the
targeted brain area, whereas low frequency (no more than 1 HZ)

reduces neuronal excitability [20]. Finally, intermittent theta burst
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and CNKI. Two authors (S.S. and W.G.) independently screened titles,
abstracts or full texts, and excluded any irrelevant articles. We also
carefully read previous meta-analysis studies [7,25,26,38-46] and
recent review articles [5,6,18,47-49] to find additional potential

studies that met inclusion criteria.

Inclusion and exclusion criteria

Only peer-reviewed studies satisfying the following criteria were
included: (i) used excitatory tDCS or high-frequency rTMS (including
conventional rTMS, deep rTMS and iTBS) stimulating the dIPFC in
participants with (a) eating disorders (binge eating type/bulimia
nervosa) or obesity or individuals with frequent food craving or
(b) substance use disorder (e.g. nicotine, alcohol or illicit drugs) or fre-
guent smoking; (i) randomized controlled trials that used sham brain
stimulation; (iii) reported at least one follow-up visit (>2 days after the
last neuromodulation session [50]) during which craving or consump-
tion or abstinence were assessed; and (iv) provided means, standard
deviations, t, F or P statistics or other data that could be used to calcu-
late the effect size. The inclusion criteria did not limit the tools used
to assess clinical outcomes or the settings of the neuromodulation
intervention parameters.

Studies meeting any of the following criteria were excluded:
(i) included other types of patients (e.g. depression, schizophrenia or
chronic pain); (ii) used techniques other than high frequency rTMS
(e.g. low frequency rTMS or continuous theta burst stimulation) or
excitatory tDCS; (iii) assessed the neuromodulation effects targeted at
dIPFC using outcome measures other than craving or consumption or
abstinence; (iv) combined neuromodulation with other intervention
methods (e.g. cognitive-behavioural therapy or pharmacological ther-

apy); and (v) not published in English, Chinese or German.

Risk of bias assessment and data extraction

The Cochrane Collaboration’s risk of bias tool was used to evaluate
the risk of bias for each study [51]. High, low or unclear risk ratings
were assigned for (i) selection bias (including random sequence gener-
ation and allocation concealment); (ii) performance bias (including
blinding of participants and personnel); (iii) detection bias (including
blinding of each outcome assessment); (iv) attrition bias (including
incomplete outcome data); (v) reporting bias (including selective
reporting); (vi) other bias [51]. Additionally, the sham condition and
blinding procedures used within studies were evaluated.

The extracted data included the study name, type of population,
number of participants, stimulation technique, anodal/rTMS stimula-
tion target, total number of stimulation sessions (per condition), inten-
sity (% resting motor threshold) / frequency (Hz), current density /
current duration, duration between the last stimulation session and
follow-up evaluation, the measures used to assess craving or con-
sumption or abstinence during follow-up. For studies without means

and standard deviations, we used P values to calculate the effect size

with Wilson’s practical meta-analysis effect size calculator [52]. For
studies that reported more than one outcome measures, we calcu-
lated each measure’s effect size and merged them to obtain a pooled
effect size by Comprehensive Meta-Analysis (CMA) software (e.g. one
study used the Food Cravings Questionnaire-Trait, Food Craving
Questionnaire-State and Food Craving Inventory [27]). We only evalu-
ated the follow-up effect if the time interval between the last stimula-
tion and the last follow-up evaluation was >2 days [50]. For studies
with multiple follow-ups (multiple visits >2 days after the last
neuromodulation session [50]) (Table 1), we only included data from
the last follow-up in the respective analyses to avoid over-
representation of these studies. If a study did not report sufficient
data for calculating the effect size, we contacted the authors. If a
study only used figures to report data, we used Engauge Digitizer [53]
to extract the data from the figures.

Risk of bias assessment, blinding procedures valuation and data
extraction were conducted by two authors (S.S. and W.G.) indepen-
dently. Any disagreements were resolved through discussion.

Data analysis

The statistical analysis plan was not pre-registered. The analysis was
done using CMA (version 2.0). A synthesized effect size Hedge's g
was calculated to represent the effect across studies, with a 95% CI.
Compared to Cohen'’s d, Hedge's g can be corrected for a possible bias
of studies with small sample sizes [54]. A random-effects model was
used for all meta-analyses, which provides a more conservative esti-
mate and is more appropriate for generalization beyond the included
studies than a fixed-effects model [54,55]. For each meta-analysis
with at least 10 studies, a revised funnel plot after trim and fill tech-
nique [56] and Egger’s regression intercept test was adopted to assess
publication bias [57]. Higgins' I? statistic was used to evaluate
between-study heterogeneity [58].

different

neuromodulation on craving, consumption and abstinence were calcu-

As illustrated in Fig. 1a, three effects of
lated: (i) the acute (or immediate) effect of neuromodulation during
ongoing stimulation sessions (i.e. active [last-stimulation minus base-
line] vs sham [last-stimulation minus baseline]); (i) the maintenance
effect (i.e. the follow-up effects we hypothesized to find in the cur-
rent meta-analysis) of the neuromodulation intervention until the last
follow-up assessment as compared to the baseline (i.e. active [last
follow-up minus baseline] vs sham [last follow-up minus baselinel);
and (iii) a potential post-stimulation effect between the last stimula-
tion and the last follow-up evaluation (i.e. active [last follow-up minus
last-stimulation] vs sham [last follow-up minus last-stimulation]). If
there was a larger effect in the active neuromodulation condition as
compared to the sham condition, then the effect size was defined as a
positive value. Furthermore, to investigate if there were differences
between drug and ‘food’ addiction [12,59], drug-specific effects [10],
or differences by neuromodulation protocol [49], we performed sub-
group analyses using Q test [52] to explore whether maintenance

effects differed by (i) the type of populations, stimulation technique
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FIGURE 1 (a) The definition of the
assessed effects (FU: follow-up) and (b)
flow chart of the study selection process.
S: stimulation session

FIGURE 2 Acute effect of
neuromodulation on craving (a) and
consumption (b)
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both of the two studies [33,67] (g=0.507, CI = 0.257-0.757,
P < 0.001; I? = 0.00%, P = 0.573). We did not assess the publication
bias for the acute effect of neuromodulation on consumption because

of the low number of studies (n = 9).

Maintenance effect of neuromodulation on craving,
consumption and abstinence

To see if neuromodulation intervention effects were sustained over a
longer time period, we then tested for a significant effect at the last
follow-up assessment (84 + 83 days) as compared to the baseline.
Active stimulation targeted at dIPFC (vs sham stimulation) led to a
reduction of craving at follow-up, with a medium effect size
(g=0.677, Cl = 0.440-0.914, P<0.001, [Fig. 3a]; I%=23.60%,

P =0.212). The maintenance effect on craving was retained after

/N NNt

a 25% &I

FIGURE 3 Maintenance effect of
neuromodulation on craving (a),
consumption (b) and abstinence (c)

I
excluding the study that used deep rTMS [30] (g = 0.625, Cl = 0.413-
0.838, P < 0.001; I° = 5.31%, P = 0.393). A relatively small amount of
potential publication bias was found for the maintenance effect of
neuromodulation on craving by funnel plot (Supporting information
Fig. S2B), consistent with a non-significant result from Egger's test
(trao) = 0.434, P = 0.673).

Second, active neuromodulation interventions also led to a signifi-
cant reduction of consumption at the last follow-up evaluation, with a
small effect size (g = 0.445, CI = 0.245-0.645, P < 0.001, [Fig. 3b]; I?

=0.00%, P =0.770). The maintenance effect on consumption was
retained after the exclusion of the study that used deep rTMS [33]
(g =0.384, Cl = 0.170-0.598, P < 0.001; /2 = 0.00%, P = 0.921) or the
study with high risk bias [67] (g = 0.479, Cl = 0.271-0.687, P < 0.001;
12 = 0.00%, P = 0.827) or both of the two studies [33,67] (g = 0.417, Cl
= 0.194-0.641, P < 0.001; I% = 0.00%, P = 0.949). No sign of publica-

tion bias was found for the maintenance effect of neuromodulation on
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consumption by funnel plot (Supporting information Fig. S2C), consis-

tent with a non-significant result from Egger's test (tig; = 1.041,
P =0.328).

Third, we found that active neuromodulation interventions signifi-
cantly increased abstinence rates at the last follow-up assessment,
with a medium effect size (g = 0.698, Cl = 0.433-0.963, P < 0.0001,
[Fig. 3cl; 12 = 0.00%, P =0.529). The maintenance effect on absti-
nence rates was retained after exclusion of the study that used deep
TMS [33] (g=0.750, ClI = 0.447-1.053, P < 0.0001; I2 = 0.00%,

P = 0.454). We did not assess the publication bias for maintenance

effect of neuromodulation on abstinence because of the small number
of studies (n = 6).

Maintenance effects by population type, stimulation
technique and stimulated hemisphere

As presented in Table 2, additional analysis demonstrated a mainte-
nance effect on craving regardless of the population studied (food,

nicotine, or drug abuse), the stimulation technique used (rTMS vs

TABLE 2 Maintenance effects by population type, stimulation techniques and stimulated hemispheres

Effect size Heterogeneity

Measure Moderator Number of studies Hedge’s g 95% Cl P value I? P value
Craving Type of population

Alcohol 1 NA NA NA NA NA

Food 4 0.786 [0.287, 1.284] 0.002 52.24% 0.099

Nicotine 5 0.581 [0.065, 1.096] 0.027 45.76% 0.117

Drug 2 0.785 [0.321, 1.249] 0.001 0.00% 0.994

Stimulation techniques

rTMS 6 0.610 [0.197, 1.022] 0.004 51.95% 0.065

tDCS 6 0.767 [0.476, 1.057] <0.001 0.00% 0.669

Anodal stimulation hemisphere

Right dIPFC 3 0.731 [0.384, 1.077] <0.001 0.00% 0.732

Left dIPFC 8 0.581 [0.280, 0.882] <0.001 25.53% 0.225
Consumption Type of population

Alcohol NA NA NA NA NA NA

Food 1 NA NA NA NA NA

Nicotine 9 0.459 [0.242,0.675] <0.001 0.00% 0.692

Drug NA NA NA NA NA NA

Stimulation techniques

rTMS 4 0.546 [0.225,0.867] 0.001 0.00% 0.559

tDCS 6 0.381 [0.126,0.637] 0.003 0.00% 0.697

Anodal stimulation hemisphere

Right dIPFC 2 0.332 [-0.313,0.977] 0.314 29.55% 0.234

Left dIPFC 7 0.395 [0.162,0.628] <0.001 0.00% 0.943
Abstinence Type of population

Alcohol 2 0.863 [0.408, 1.319] <0.001 0.00% 0.890

Food NA NA NA NA NA NA

Nicotine 3 0.735 [0.369, 1.101] <0.001 0.00% 0.527

Drug 1 NA NA NA NA NA

Stimulation techniques

rTMS 3 0.735 [0.369, 1.101] <0.001 0.00% 0.527

tDCS 3 0.646 [0.190, 1.102] 0.005 28.13% 0.249

Anodal stimulation hemisphere

Right dIPFC 3 0.646 [0.190, 1.102] 0.005 28.13% 0.249

Left dIPFC 2 0.904 [0.411, 1.396] <0.001 0.00% 0.600

dIPFC = dorsolateral prefrontal cortex; NA = not available; rTMS = repetitive transcranial magnetic stimulation; tDCS = transcranial direct current
stimulation. Note that we did not perform a meta-analysis if less than two studies were available.
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tDCS) or the stimulated hemisphere (left vs right dIPFC). Similarly, the
maintenance effect on consumption was significant independently of
the stimulation technique used (rTMS vs tDCS). However, the mainte-
nance effect on consumption was only significant when stimulation
was targeted at the left dIPFC, but not when it was targeted at the
right dIPFC (7 left dIPFC studies; 2 right dIPFC studies) (Table 2).
Effects on consumption by population could not be compared,
because most consumption was only assessed in smokers (9 studies)
and only one study on food consumption. Finally, the maintenance
effect on abstinence was significant for both populations assessed
(alcohol and nicotine abuse), both stimulation techniques used (rTMS
vs tDCS) and protocols that stimulated either hemisphere (right vs left
dIPFC) (Table 2).

The short-, mid- and long-term maintenance effect

To assess if the intervention effects were stable over time, we
separated studies into three subgroups that conducted the last
follow-up evaluation during short-, mid- or long-term duration
relative to the end of the intervention. We found that effects were
overall stable and had similar effect sizes over time. Craving was
significantly reduced during short-term (3-30days: 3 studies,
g=0.603, Cl = 0.211-0.995, P =0.003; [%2=22.26%, P=0.276),
mid-term (1-6 months: 8 studies, g=0.636, CI = 0.352-0.920,
P<0001; 1%=12.18%, P=0.335) or
(> 6 months: 1 study, g=1.562, Cl

long-term  abstinence

0.648-2.476, P =0.001).

gSA | ==
i |

Effects on consumption had smaller effect sizes than effects on
craving. There was a marginally significant reduction of consumption
during short-term (3-30 days: 3 studies, g=0.347, Cl = -0.026-
0.721, P = 0.068; 1? = 0.00%, P = 0.488) and a significant reduction
during mid-term abstinence (1-6 months after the last intervention:
7 studies, g=0.484, Cl = 0.248-0.721, P<0.001; |2 =0.00%,
P =0.691). No study assessed consumption during long-term absti-
nence. All studies that assessed abstinence did this during mid-term

abstinence (see Fig. 3c).

Post-stimulation effect of neuromodulation on craving
and consumption

Finally, as a control analysis, we evaluated if the effects of
neuromodulation interventions were stable after the last stimulation
session, to investigate if there was a delayed post-stimulation effect.
We found no further change in the level of craving (3 = 0.106, ClI =
-0.095-0.306, P =0.301, [Fig. 4a]; I? =0.00%, P=0.814) or con-
sumption (g =-0.015, ClI = -0.247-0.217; P =0.899, [Fig. 4b]; I?
=0.00%, P = 0.984) after the last stimulation session, indicating the
stability of effects after the intervention was concluded. The post-
stimulation effect on consumption remained non-significant after the
exclusion of the study with high risk bias [67] (g =-0.034, ClI =
-0.279-0.211, P = 0.786; 1? = 0.00%, P = 0.975). No sign of publica-
found for the effect of

tion bias was post-stimulation

neuromodulation on craving by funnel plot (Supporting information
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Fig. S2D) or by Egger’s test (tjs; = 2.113, P = 0.064). We did not assess
the publication bias for the post-stimulation effect of intervention on

consumption because of the small number of studies (n = 8).

DISCUSSION

We investigated three main questions in this systematic review. Our
results demonstrated that neuromodulation interventions decrease
craving and consumption levels in people with drug addiction
(or overeating) immediately after the intervention and that these
effects remain stable over time, from short-term to mid-term to long-
term abstinence. Our control analysis further demonstrated that
effect sizes were stable after the end of the intervention. Data quality
checks indicated high quality of the included studies. There was no
evidence for differences between participant populations or between
stimulation techniques, although neuromodulation targeting the left
hemisphere may be more efficacious than targeting the right
hemisphere.

We replicated previous recent meta-analysis demonstrating the
reduction of craving and consumption levels in people with drug
addiction (or overeating) immediately after the neuromodulation inter-
vention [7,25,41]. Importantly, we extended these previous results by
demonstrating that such intervention effects were sustained over
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uncorrected [28,34,35,69,70] P values. These differences in approach
may have affected the results of this analysis. Finally, the inclusion of
only published data in this systematic review might have inadvertently

increased the risk of bias.

CONCLUSIONS

Excitatory neuromodulation targeting dIPFC led to a sustained reduc-
tion of craving and consumption levels in individuals with addiction or
overeating behaviour. These effects did not differ by the investigated
population (e.g. individuals with alcohol, nicotine, drug or overeating
behaviour) or stimulation protocol used (rTMS or tDCS). The current
results provide initial evidence for the efficacy of neuromodulation
interventions as a potential clinical treatment for individuals with drug

addiction or overeating behaviour.
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