
Reward makes the rhythmic sampling of spatial attention emerge earlier

Zhongbin Su¹ • Lihui Wang^{2,3} • Guanlan Kang⁴ • Xiaolin Zhou^{1,5,6,7}

Accepted: 2 December 2020 / Published online: 13 January 2021 © The Psychonomic Society, Inc. 2021

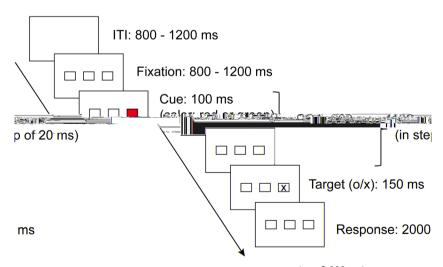
Abstract

Introduction

(, 1 0). - - (), (, , < 300). (, , < 300). (, , < 2005). (,), (

(, __, 2014)______

Material and method


Participants

Design and procedure

_ 100 _) _ _ _ _ 100 _ . _ _ -, - , - , - , - , - _ _ _ _ _ 200 .

00-1,200""(1.3 _ 1.3). 1,100 200 2,000

< 00

= ., 2016° = = &. , = , = . 440 . _ _ _, 50 _. _ 200 _ _ 10 1,760 ., 20 ,

Data analyses

6. 2– 4),

Filtering analysis

_ 10 _ _ (. , .) . 2 (. _)_ 46 (200-1,100) ()- - , , , , , & , <u>2007</u>). 5,000 (..,). -

Time-frequency analysis

(0-2)

<.05

FFT analysis and cross-correlation analysis

FFT analysis

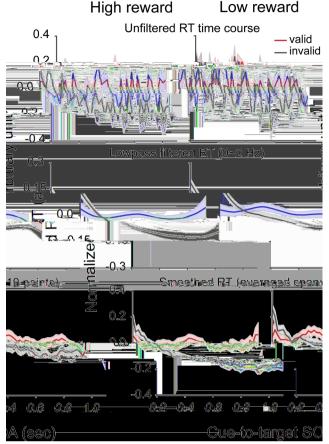
1,000

Cross-correlation analysis

1,000

$$\Delta = \sqrt{\frac{-1}{\sum_{i=1}^{n} \left(-- \right)^2}}$$

Phase coherence analysis

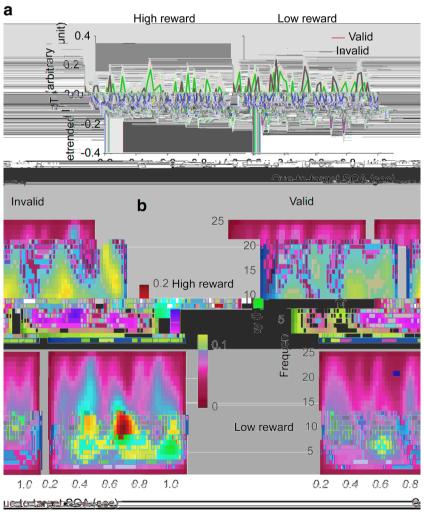

----(2-3 -) - -, ,) , _ _ _ (2–3 _) _ , , (---, -- - , . . . ----

--- /- -- / ---/ --- / ---/

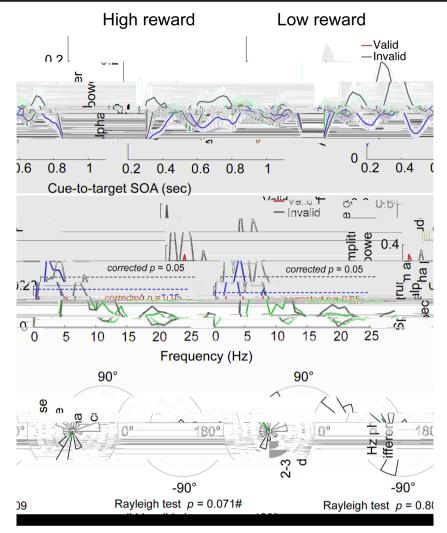
Results

Reward modulation on RT time courses at low-frequency (0-2 Hz)

____(,_ -____ $.003, \eta^2 = 0.34,$, $\bullet'(45, 45) = 6.$ $0.001, \eta^2$ 0.250, ..., 0.00^2 , 0.00^3 $\underline{}$, f(1, 21) 6.10, .022, η^2 0.225, .010, η² 0.070, _ _ _ _ , **r**'(45, 45) 1.57, = , $\vec{r}(45, 45)$ 11.34, $< 0.001, \eta^2$ 0.351, - , $\mathbf{i}'(45, 45) < 1$. _ (0-2 _) , . , , , _ (0-2 _) _ 200 , 20 .05, = , ,5 , ,< .001),_____ . _ . (. .,_ .001).

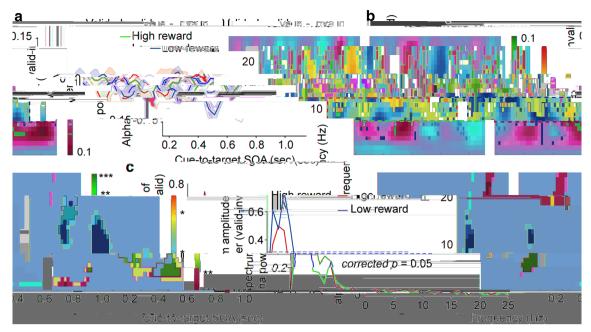


(4 0–1,0 0) 3 4 7


Table 1	_				()_	-	<u> </u>		 -
	٠,	,	k.	_		_	¬, ¬_		, ,	-
,			,	٠,						

(200–2 0) 3 1 63 404 77 3 7 6 401 70

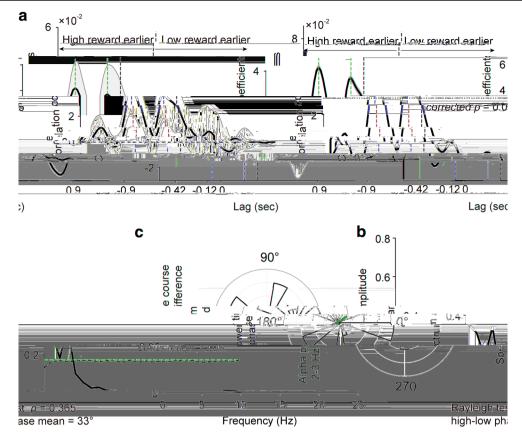
Periodic alpha power inhibition in the cue-valid condition relative to the cue-invalid condition

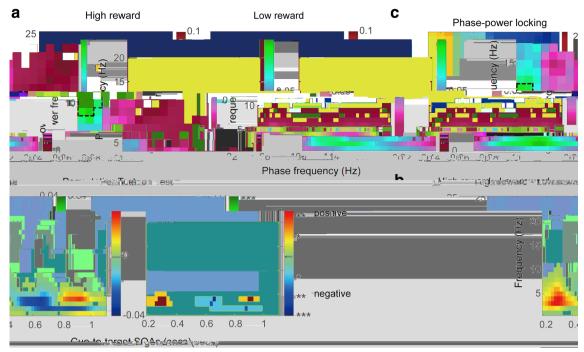


(200–300), (700–1,100)

(= , , < .05 , .6,), .

Periodic alpha pulses emerged earlier under higher reward




22,.

Discussion

___, 200 * _ _ , ___, & (_ _ , ,_ _) ,, --, , , , , , - , - , , , $\frac{1}{2}$, , = -, , - - · - - , _ ., 2017 $(___, __, , __, , \&_-, , 2015), _$ _, _ , , _ _ , _ , _ , _ _ . , , _ , _ - , _ -, (_ , _ , , 2017). .__ _ (__ ,_ _ , __ , __ , &_ ,. , - - (.., · ·) · · = · · · · · · · · · · · = - · · ·

References

_ , ., . , ., ., . = __, . ., & , ., . . (2010). , . . (2015). _ . - _ , 23(1–2), 67– 1. . . // , , / 10.10 0/135062 5.2014. 56 51 . .2015.12.062 , , . ., . ., & _ , . .(2011). _. -110404710 , , . ., <u>.</u> . ., & <u>_</u> . , .(2014). <u>_</u> . -, 1 , -6. .. // , , /10.1016/. _ . . 2014.0 .062 , 1 (), 437–443. // , /10. 1016/. .2012.06.010 _ , ., & , . (1 5). . , . , _ _ _ _ _ , (1), 2 -300. , .(200). _ _ , *31*(10). ... // , , /10.1 637/ . 031. 10 _ , ., ., . . . , , . . (2017).

	// /10.103 / .456	, 20(7), 7– 6.				
,	= ,. · · · · · · · · · · · · · · · · · ·	, & (2				
	/10.1523/ , ., & , . (2014).	471- 4 0.	_			
	, <i>14</i> (2), 635–646 // , .	/10.375 / 134	15-014-			
•	, 2 (24), 7 6 –7 76 .0113-0 .200	// // // // // // // // // // // // //	0.1523/			
,	1626–162 // /10.1126/ 	, 313 .112 115				
	// // // // // // // // // // // // //	, 1 (), 4	(2013).			
	72 // , , /10.1016/2012.12.	:	(2015).			
	, 2 (16), 2065–2074. 2015.06.022 , O., S.					
	, 3 <i>I</i> (), 1141–1156 // , (2010).					
	- · - · - · · · · · · · · · · · · · · ·	,	3), 2 2–			

```
_ _ , . ., &, , . (2012).
 , 22(11), 1000–1004. ... // , /10.1016/.
_ _ , . ., _ , . ., _ ., ., . ., ... (2015).
  , 2 (17), 2332–2337. ... // , . / 10.1016/... .2015.07.04
 , ..., & , . (2013).
                       177–1 0. ... // , /10.1016/ . . . . .2007.03.024
  = , \cdots , \cdots
  , , . . (201 ).
  , 30(1), 11 –12 .
   //, , /10.1162/, _ 011 5
  , . . (1 74).
                             _ , I(1), 1–15.
  .. // , , /10.10 3/ , .../61.1.1
  , i. . ., , , , , , , , , & , , , (2014).
, -_ , , , , , _ 5-, , 10- .. .. .. , .. (", -, , ..
  , 32(1), 3–25. ... // ... /10.10 0/
 , . (1 0).
 , ., & ., ., (1 4).
 _ _ , . ., ___ , ., & , . . (2011).
 2 5. ... // , /10.1016/ . . . .2010.11.004
  __ , . ., __ _ , . ., . , . ., & __ \, . (2016).
        , , , <del>,</del> , =
                      · = ·
       , 2 ( ), 131 –1330. ... // , /10.1162/, __
  00 73
, , , , & , , , , (2013).
  1177/0 567 76134 0743
 , 21( ), 1536–154 . . . // , . /10.1162/, .
 , 1 (12), 1 55–1 65. ... // , , /10.10 3/ 1 4 , __562/, __0&, 79, ₺24 66.0 16332-1.175 __. 273(,)-2 2(_)63(_)-3 33(1)206(_)15-2
```