doi: 10.1093/cercor/bhz268 A % A%%1_ P % D : 9 D % 2019 O A %

Downloaded from https://academic.oup.com/cercor/article-abstract/30/4/2673/5670744 by Peking University user on 23 April 2020

ORIGINAL AR. ICLE

Differential White Matter Maturation from Birth to 8 Years of Age

 ^{1}D , P , PA 19104, A, ²D R , C ' H _ P , P , P , PA 19104, A, ³D M P , C , H , N C R C C 100045, C $,^4D$ 9 Ε , P В , PA, A, ⁵ 94 С 9 В K L , B 100871, C , ⁶K L В Η , P M ⊈ , ⁷P 100871, C С 9 L ⊈_ , P ⁸PK -IDG/M**9**G I_ В R_ ⊈ , P , В 100871, C

Abstract

(M) 9 (D. I) (D) 94 0 8 118 (A D) fast, intermediate, fast intermediate D M A D. <u>4</u> <u>9</u> Key words: 0 8 (D. I),

Introduction

М 🦺 ,

D 9 9 9 (M) <u>91 9</u> L 💁 _ 1967; H _ . 2005), . 2005), . 2015), (\(\frac{1}{3} \) . 2009), \(\frac{1}{3} \) . 2005; \(\text{H} \) . 2006), \(\frac{1}{3} \) \(\text{M} \) 94 94 (B (L_ (ADHD) (. 2009; . 2014). M 9191 91), (91 _)**,**), g _) g <u>a</u> (. 2004). D M 9_ (D) g g (A D) (D. I), _ D MRI, (L B . 2001).

D. I, (FA), - (. 2002). R (AD), . 2002, 2005). M . 2008**).** M . 2001; H . 2012; G . 2012; . 2013;

✓ . 2014), ¶ . 2014),

¶ . 2016; L B 2011; L . 2012). K

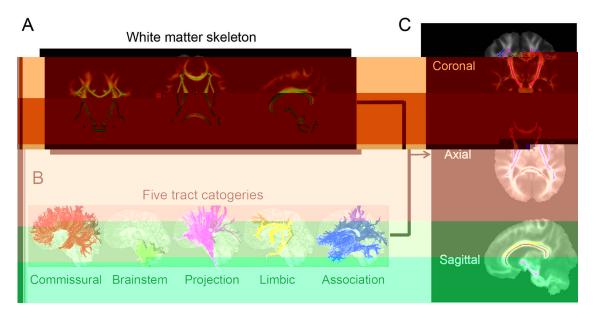
M D I

2001; ¶ . 2004; D . 2006, 2008; H

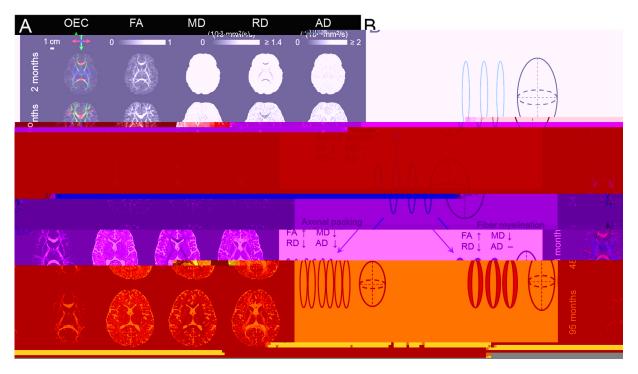
. 2006; L . 2008, 2012, 2017; ¶ . 2008;

. 2010; L B 2011; G . 2012;

. 2013, 2015; ♠ . 2014). D


¶ . M ¶ (H . 2006, 2009)

¶ . (M . . 2013) D I


. A . .

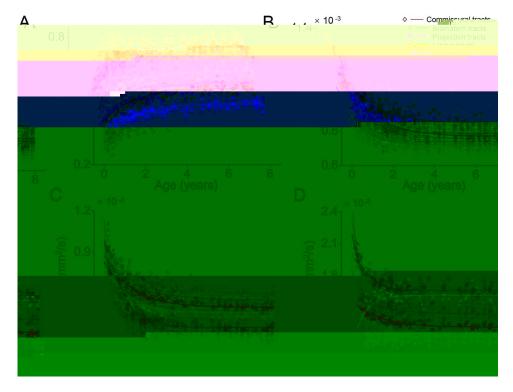
¶ ¶ ¶ . (M . . 2013) D I

. A .

<u>q</u> .

OEC, FA, MD, RD, AD . (B) . M 9) D. I 99

. 2012; G . 2012; . 2013; K 2014; . 2014, 2016) M 9L.F _) (2 8 _) M M , D M 9 . M D _ A 94 . 2011) 9 9 (B _ . 2007; . 2008; . 2012) M 💁 _ A D . D <u>9</u> A D 9 9 M M 9 A D. 9


9

æ _ . H , M М 91. 91 0.17 7.91 D. I A D AD) <u>q</u> . . , 31 ⊈ D M 9 ⊈.

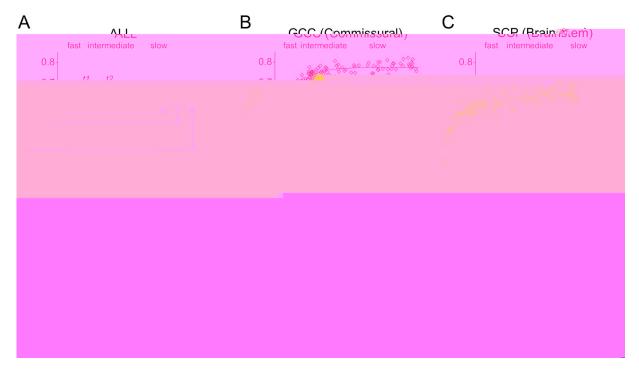
Materials and Methods

Pediatric Subjects

9 (H.K. D.H.) ₫ _ . D MR MRI 💁 _ D 💁 I _ . D_ A D g , A D **9**L_ D. I D 💁 A D

DTI Acquisition and Managerement of Tract Chari

M 9


Ι

DTI Acquisition and Measurement of Tract-Specific and Tract-Group-Specific WM Microstructure

Α (P .D.I 9 EPI_ 9 (EN E, Е $128\times128\,$ 256×256 ². A 9 70 <u>91</u> 91 9.3_ 100 .D 30 9 (J _ 1000_ . 1999), D. I 9 (H.K. D. I . A 2006) 9 . H D. I 9L.A. F <u>9</u> 1, A D 0.5 <u>4</u> . D 0.25 ₫_ (P = 0.41)(P = 0.06)A D D

D. I D. I-AD. ⊈: FA, MD, RD, M_ _ . B _ (JH ICBM-D. I-81) (M . 2008), FΑ M 118. D 🗣 31 A D 9 FΑ 94 (B)(F L . 2006) 9 В M <u>a</u>_ 9 <u>.</u> 2011, 2012). FA_ 0.2 (. 2006) F 9 1A. A M JH ICBM-D I-81 2008) M 9 9 . 1B) (9 . 2004). M 9 ₫., (CC), (GCC) 9 9 (BCC), <u>9</u>, <u>9</u> (ICP), (MCP), CP) ⊈ (PC), _ 4_ (ML); 3) 9 9 ⊈ (CP), (C), 🖳 (PIC), (RIC) (AIC), _), 9 (ACR), _ (CR), (PCR) 9 (9 9 (CGC) (CGH) _), 5) __ <u>9</u>_ (F**﴿**);

	FA	MD	RD	AD
ALL	54.4	-29.9	-44.1	-14.7
Commissural	64.8	-42.5	-63.8	-24.2
CC	92.1	-53	-73.6	-34.6
GCC	54.2	-45.1	-65.9	-29
BCC	71.2	-37.4	-59.5	-15.3
Brainstem	81.9	-22.1	-39	
PC	104	-18.8	-38.9	
MCP	90.1	-26.6	-42.2	-6.9
ICP	69	-20.3	-35.8	
CP	59		-28.9	25.7
ML	48.5	-12.3	-30.1	8
Association	54	-28.3	-38.2	-16.4
LF	63.8	-32.7	-42.9	-19.6
FOF	71.8	-22.2	-34	-8.1
. F	59.4	-22.6	-37.8	
EC	41.8	-21.9	-30.9	-11.3
	57.5	-30.3	-40.3	-24.2
Limbic	49.9	-23.5	-37.1	-8.4
F₩	44.7	-24	-38.7	-9.4
CGC	62.2	-28.2	-42.5	-11.1
CGH	40.6	-17.4	-29.5	
Projection	44.7	-27	-39.5	-13.5
PIC	35.8	-20	-41.9	-6.2
RIC	35.3	-23.1	-34.9	-11.8
AIC	57.1	-22.2	-38.3	-5.2
PCR	51.6	-28.2	-37.8	-16.4
CP	43.8	-28	-51.6	-16.8
CR	46.6	-29.5	-39.1	-18.3

Results

Overview of WM Microstructural Profile Characterized by DTI-Derived FA, MD, RD, AD, and Orientation-Encoded Colormap

Α M <u>a</u> <u>a</u> F 2A D. I-9 1. F 9 FA, MD, RD, AD 9 9 (OEC) D 2, 13, 24, 48, 95 Ą g. g, M 9 9 8 М ⊈ 9 2A, ⊈ 9 FΑ MD RD 9 9 9 9 D. I-99 99 D. I_ **(**B 2002; 2003; H . 2005; D . 2006, 2008; L . 2008; F 2B. . 2009)

Three Phases in the WM Tract Maturational Curve

- 94 FA, MD, RD, AD,
, M 94 F 3...
94 94 FA, MD, RD, AD

1. I 0 FΑ 9 8 С F fast intermediate 9 slow 9 . GCC, CP, , Fx, 9 С 9 M 9 fast intermediate . F fast intert2) GCC mediate (t1 0.97 1.94 9 9 CP (1.49 3.87 _), 2.96 (1.98)_), Fx (1.5 2.99 C . (2.1 4.08 GCC _),_ <u>q</u> . . M M 9 K P > 0.05). FA, MD, RD, AD

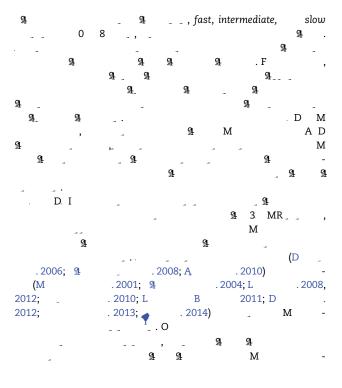
Differential Maturation of WM Tracts and Tract Groups

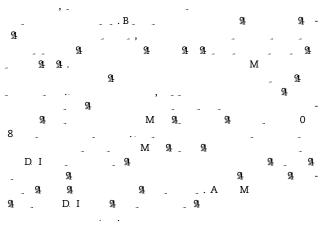
•				9	1 _	_	FA	, MD,	RD,
AD	-		_		_		₫.	<u>a</u>	,
			(F	5 8),			-
		_	(F	_ 5 8)	. A		
	F	5,			<u>9</u>	9	_		
M FA	54.4%,		FA	9	<u>9</u>	(<u>a</u>	
		_)		<u> </u>		(64.8	%)	_	
(81.9%)	<u>9</u>		_		FA	<u>9</u>	9	_ (9	
<u>a</u>				_)		⊈ (49.9%),	<u> </u>	ŀ
(44.7%),		<u> </u>		(54%)	<u> </u>	_		_	
Α					F	5		2.,	

Table 2	_	(-)-	_	(-)	9	_	<u>9</u>	<u>9</u> 1	<u>9</u> .	FA,
	. P	M	M		91			M	91			

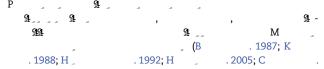
	Fast		Interm	ediate	Slow		
	0 1	L	1 2	L	2	L	
All	0 1.3	1.3	1.3 2.6	1.3	2.6		
Commissural	0 0.9	0.9	0.9 1.79	0.9	1.79		
Brainstem	0 1.08	1.08	1.08 2.15	1.07	2.15		
Association	0 1.61	1.61	1.16 3.19	1.58	3.19		
Limbic	0 1.63	1.63	1.63 3.23	1.6	3.23		
Projection	0 1.64	1.64	1.64 3.25	1.61	3.25		
CC	0 0.49	0.49	0.49 0.97	0.49	0.97		
PC	0 0.87	0.87	0.87 1.74	0.87	1.74		
PIC	0 0.87	0.87	0.87 1.74	0.87	1.74		
GCC	0 0.97	0.97	0.97 1.94	0.97	1.94		
MCP	0 1.03	1.03	1.03 2.06	1.03	2.06		
ICP	0 1.17	1.17	1.17 2.33	1.16	2.33		
BCC	0 1.19	1.19	1.19 2.37	1.18	2.37		
RIC	0 1.2	1.2	1.2 2.39	1.19	2.39		
AIC	0 1.31	1.31	1.31 2.61	1.3	2.61		
LF	0 1.34	1.34	1.34 2.68	1.34	2.68		
CP	0 1.49	1.49	1.49 2.96	1.47	2.96		
F x	0 1.5	1.5	1.5 2.99	1.49	2.99		
CGC	0 1.55	1.55	1.55 3.07	1.53	3.07		
PCR	0 1.58	1.58	1.58 3.14	1.56	3.14		
ML	0 1.67	1.67	1.67 3.31	1.64	3.31		
FOF	0 1.72	1.72	1.72 3.41	1.68	3.41		
. F	0 1.73	1.73	1.73 3.43	1.69	3.43		
CP	0 1.8	1.8	1.8 3.55	1.75	3.55		
CGH	0 1.83	1.83	1.83 3.6	1.77	3.6		
EC	0 1.83	1.83	1.83 3.6	1.77	3.6		
CR	0 1.96	1.96	1.96 3.83	1.87	3.83		
	0 1.98	1.98	1.98 3.87	1.89	3.87		
ACR	0 2.03	2.03	2.03 3.96	1.93	3.96		
C .	0 2.1	2.1	2.1 4.08	1.98	4.08		

fast intermediate 9 2.15 _) (0.9)1.79 (1.08)9 **1.63** 3.23 _), 9 (1.64)3.25 (1.61 , ⊈ 3.19 9 _). C M (1.3 2.6 9 9 MD (0.72 1.44 _), RD (0.78 1.57 AD (0.56 1.13 _), _) 9 % (MD: 1.57 3.12 _ , AD: 1.81 _), RD: 1.53 3.05 3.56 9 _ , RD: 1.41 2.81 _ , AD: 1.46 (MD: 1.42 2.84 _ , RD: 1.24 9 2.92 _), (MD: 1.17 2.34 --_ , AD: 0.94 2.48 1.87 9 3. _) - (5.) a, b, 9 С FΑ 9 5. ₫. a, b, **9**1/ С M 9 M . 5). F _ (a), b, 9 С <u>9</u>_ M 9 9 <u>g</u> 9 9 (F . 3).


F 6,_ 9 а <u>a</u>_ <u>9</u>_ . 9 ₫_ 9 <u>⊈</u>.0 CGC LF FΑ 9 ⊈,_ CGC 9 9 LF

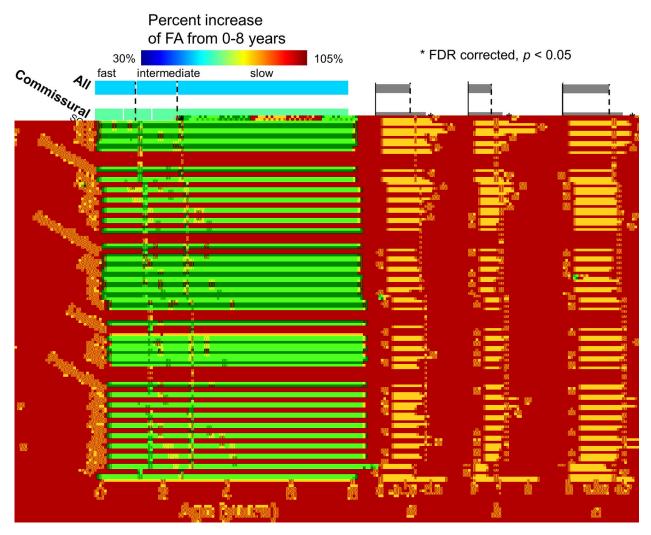

Larger Microstructural Residual Variance in the WM of Children with ASD During Brain Development from 2 to 8 Years of Age

Discussion

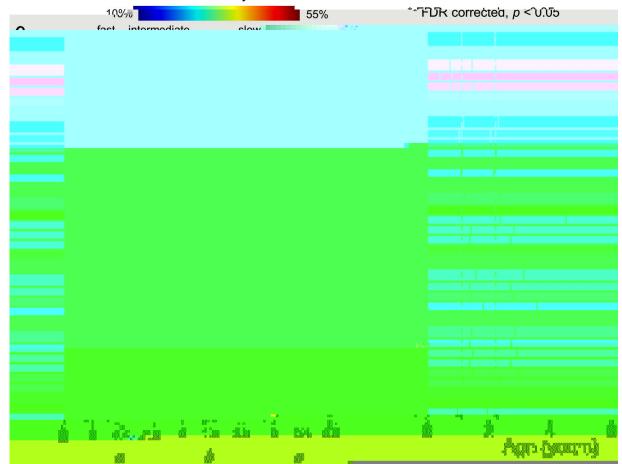

9 <u>9</u>-9 D. I-9 M 9 9 9 (n = 118)9 M M <u>9</u>__ 9 9 9 9

	Fast		Interm	ediate	Slow		
	0 1	L	1 2	L	2	L	
ALL	0 1.09	1.09	1.09 2.19	1.09	2.19		
Commissural	0 0.72	0.72	0.72 1.44	0.72	1.44		
Brainstem	0 1.15	1.15	1.15 2.31	1.15	2.31		
Association	0 1.17	1.17	1.17 2.34	1.17	2.34		
Projection	0 1.42	1.42	1.42 2.84	1.41	2.84		
Limbic	0 1.57	1.57	1.57 3.12	1.55	3.12		
CC	0 0.39	0.39	0.39 0.79	0.39	0.79		
GCC	0 0.73	0.73	0.73 1.47	0.73	1.47		
C .	0 0.97	0.97	0.97 1.93	0.96	1.93		
PC	0 1.02	1.02	1.02 2.03	1.02	2.03		
MCP	0 1.02	1.02	1.02 2.04	1.02	2.04		
	0 1.05	1.05	1.05 2.09	1.04	2.09		
BCC	0 1.05	1.05	1.05 2.1	1.05	2.1		
ML	0 1.07	1.07	1.07 2.14	1.07	2.14		
LF	0 1.09	1.09	1.09 2.18	1.09	2.18		
ICP	0 1.11	1.11	1.11 2.22	1.11	2.22		
CP	0 1.17	1.17	1.17 2.33	1.16	2.33		
EC	0 1.35	1.35	1.35 2.69	1.34	2.69		
P x	0 1.36	1.36	1.36 2.71	1.35	2.71		
AIC	0 1.36	1.36	1.36 2.71	1.35	2.71		
PIC	0 1.36	1.36	1.36 2.71	1.35	2.71		
CGC	0 1.4	1.4	1.4 2.78	1.39	2.78		
. F	0 1.4	1.4	1.4 2.79	1.39	2.79		
CR	0 1.45	1.45	1.45 2.89	1.44	2.89		
RIC	0 1.45	1.45	1.45 2.89	1.44	2.89		
PCR	0 1.48	1.48	1.48 2.94	1.46	2.94		
ACR	0 1.52	1.52	1.52 3.01	1.5	3.01		
CGH	0 1.8	1.8	1.8 3.55	1.75	3.55		
FOF CP	0 2.36	2.36	2.36 4.51	2.14	4.51		

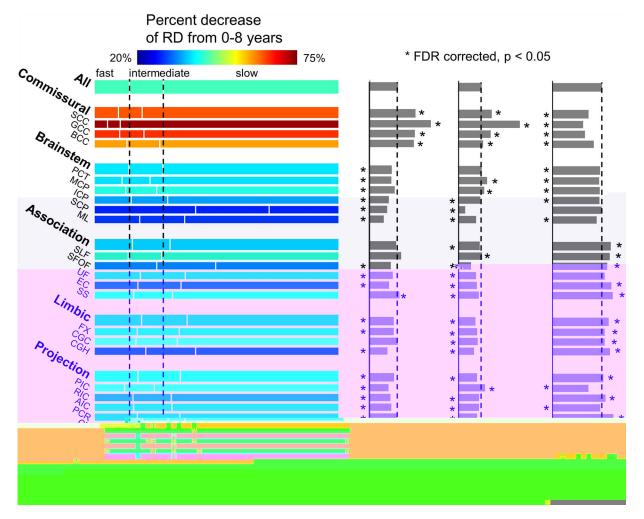
Possible Biological Processes Underlying WM Maturation from 0 to 8 Years



	Fast		Interm	ediate	Slow		
	0 1	L	1 2	L	2	L	
ALL	0 0.97	0.97	0.97 1.94	0.97	1.94		
Commissural	0 0.56	0.56	0.56 1.13	0.56	1.13		
Association	0 0.94	0.94	0.94 1.87	0.94	1.87		
Projection	0 1.46	1.46	1.46 2.92	1.45	2.92		
Limbic	0 1.81	1.81	1.81 3.56	1.75	3.56		
Brainstem							
CP	0 0.27	0.27	0.27 0.55	0.27	0.55		
. F							
CC	0 0.35	0.35	0.35 0.69	0.35	0.69		
	0 0.43	0.43	0.43 0.87	0.43	0.87		
ICP							
GCC	0 0.6	0.6	0.6 1.19	0.6	1.19		
CP	0 0.62	0.62	0.62 1.23	0.62	1.23		
PC							
BCC	0 0.98	0.98	0.98 1.96	0.98	1.96		
LF	0 1.04	1.04	1.04 2.08	1.04	2.08		
MCP	0 1.04	1.04	1.04 2.09	1.04	2.09		
EC	0 1.08	1.08	1.08 2.17	1.08	2.17		
F _X	0 1.11	1.11	1.11 2.21	1.1	2.21		
CR	0 1.39	1.39	1.39 2.77	1.38	2.77		
ACR	0 1.43	1.43	1.43 2.84	1.42	2.84		
CGC	0 1.58	1.58	1.58 3.13	1.55	3.13		
PCR	0 1.68	1.68	1.68 3.33	1.65	3.33		
RIC	0 1.99	1.99	1.99 3.89	1.9	3.89		
AIC	0 2.23	2.23	2.23 4.29	2.06	4.29		
ML	0 2.63	2.63	2.63 4.91	2.27	4.91		
FOF	0 4.13	4.13	4.13 6.43	2.31	6.43		
PIC	0 4.47	4.47	4.47 6.66	2.19	6.66		
CGH							
C .							


Differentiated Maturation Across WM Tracts and WM Tract Groups

D_ . 2012; K . 2014; 💣 ⊈ (G . 2016; 0 . 2019) D. I <u>a</u>_ 9 9 M 9 9 M (F _ 5 8). 9 (FA: $(a)\uparrow$, $b\uparrow$, $c\uparrow$; RD: $a\uparrow$, $b\uparrow$, $c\downarrow$; AD: $a\uparrow$, $b\uparrow$, $c\uparrow$) § M_{-} 1) 9 9 9 (AD: c↑) (FA: c↑; RD: c↓); 2) ₫ _ 9 (AD: a↑) _ (a)↑; RD: a↑); 3) 9 (AD: *b*↑) (FA: $b\uparrow$; RD: $b\uparrow$). O 9 9 9 (FA: $(a)\downarrow,b\downarrow,$ $c\downarrow$; RD: $a\downarrow$, $b\downarrow$, $c\uparrow$; AD: $a\downarrow$, $b\downarrow$, $c\downarrow$)_ <u>a</u>_ 9 (AD: 1) (FA: c↓; RD: c↑); 2)_ 9 c↓) _ (a)↓; RD: (AD: a↓) (FA: a↓); 3) 9 (AD: b↓) (FA: b↓; RD: b↓). C 9


9 _ 1967; K L 💁 . 1988; H 9 1990; R . 1994; P . 2008, 2011), M F . 5: 1) M PCR .F CC. PIC. GCC, AIC, 9 ; 2) M ACR, 9 9 M 9 9 CC 9 9 0 8 . 2018) (. ., R 9 1994) 9 9 9 9 <u>9</u> 9 9 M FOF LF) 💁 9 9 M Μ M 9 (. ., CC 9 M 9 <u>9</u>_

Percent decrease of MD from 0-8 years

A D (H 2007). H _ _ (. ., M_ . 2015) 5) . 2009). M A D, 9 (DKI) (J . 2005) D M, (NODDI) (. 2012), 🖳 M 9 D. I (D ., 0 9 2019). D. I-M <u>9</u>_ . D D. I-<u>a</u> 9 0 8 D. I-С 35 104%), 9 (. ., FA <u>a</u> 9 . D 9 Μ

Supplementary Material

§ Cerebral Cortex

Conclusion

Funding

Н DΗ (NIHMH092535, MH092535- 1 HD086984), С _ M _ g g 2015CB351800), D F (MO . 94 94 F (N FC) D F (31421003 C (81671651). 31 671 168) D P

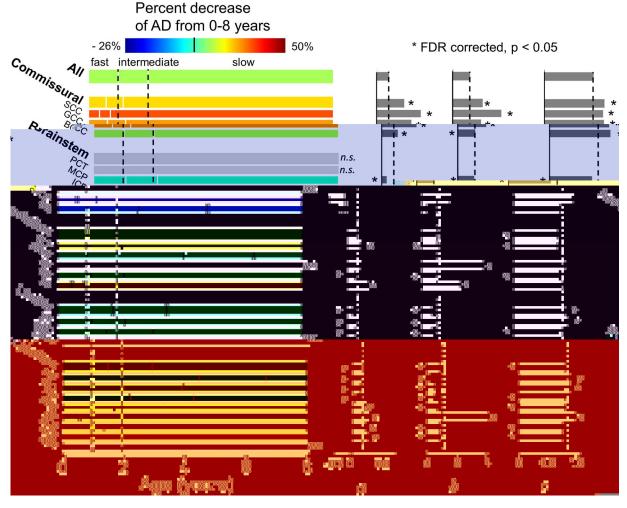


Figure 8. I 9 9 AD 0 8 (9 9 A D 1), ... (/ ...

Notes and Conflicts of Interest

L C '.
H P 94 ...
94 94 ...

References

- A M, I, L N, M P, D B B,
 R R, D N. 2014. A
 R P, D B B,
 R D N. 2014. A
 R P, D B B,
 R D B B,
 R P, D B B,

- B DB, K -D , A DA, E PM, H
 ., A R, E A, L , LB. 2007. ASS
 D I . Neuroimage. 37:40 47.
- B _ L, N , ,F _ L, F _ H, .
 F. 2005. E _ 9. 9.

Downloaded from https://academic.oup.com/cercor/article-abstract/30/4/2673/5670744 by Peking University user on 23 April 2020

. Nature Neuroscience.

M

M

- 8:1148 1150.
- B J, A A, F § AD. 2011. N 94 Cerebral Cortex. 21:459 466.
- B BA, K HC, K A , G FH. 1987. 9. I. A Journal of Neuropathology & Experimental Neurology, 46:283 301.
- C _ M, ML, B , E A, L A, D ₫ _ 🗿 . Nature. J., P. 🗣 CJ. 2009. A 461:983 986.
- C G, M , R 9. P. 2010. R 9. 9 . Journal of Anatomy. 217:276 288.
- C KR, K _ -D B, M R, M BA, C 9 J, H A, K , L KO. 2010. A 9. 9. . Journal of the American Academy of Child and Adolescent Psychiatry. 49:173.
- D C, D DC, O' 9 J, D H, J BA. 2012.
- G, , J _ M, B _ . , J _ -B H, 9 J, J , N, K, M
 - . Brain. 130:
- D _ J, D -L G, P M, M JF, C D & E, L B D, H -P L. 2008. A -
- . Human Brain Mapping. 29:
- D _ J, H -P L, D -L G, C L B D. 2006. A
- 9 . Neuroimage. 30:1121 1132.
- D _ J, P С, . В, Н, К F, H -P L, D -L G. 2016. E <u>a</u>
- . Human Brain Mapping. 33:2390 2406. F JA, B JL, P G, K DN, H M, $M \qquad CM, \ H \qquad JD, \ R \qquad MP, \ C \qquad _ \quad , \ M \quad _ \ N.$ _ 9_
- . Bipolar Disorders. 9:799 809. , L , C , G G, JK, J , G
 - American Journal of Neuroradiology. 30:290 296.
- G Y, G , A, G H, M, L , G G, G JH. 2012. Q 9- 2 . Neuroimage. 61:542 557.
- G N, L A, L AD, K AD, L AD, C A, G D, G JN, A, R JL. 2008.

 - 94 - 94

 - age. 103:214 224.

- . Proceedings of the National Academy of Sciences. 105:15979 15984.
- G CB, F 💁 P. , G JH, G G. 2009. G __ D. I <u>9</u>____9 . Neuroimage. 45:5133 5142.
- H _ M, H , M . , , , , A K, O
- . . 1992. D 94 : __ 94 Brain and Development. 14:1 6.
- $\label{eq:hamiltonian} H \qquad \ \ \, RL, B \qquad \ \ \, N \ , D \ \ \, . \ \ \, M, F \qquad \qquad RD, L \ LG,$ JJ, K HC. 2005. A
 - . Journal of Comparative Neurology. 484:156 167.
- H L, -M C, C G, L -K, K J, N M-C, M R, C P, D PK, H K. 2006. P : . Neuroim
 - age. 29:493 504.
- H H,F Y, M,M -C K,Y G,D J,D M, R R, D -A R. 2012. D 9 9 A '
 - 9. Neurobiology of Aging. 33:2029 2045.
- DE, R . . 2011. Н Н, Г 🦹 , . Neuropsy-
- chopharmacology. 36:684 691. H H, M, R, J, R . , R S . _ LJ, , P, M
- MI, M . 2009. A 94 94 94 . Journal of Neuroscience. 29:4263 4273.
- - . Neuroimage. 33:27 38.
- H K, H , A G, M N, B M. 2008. C 9 9 9 9 9 9 1 1.150 60
 - Research. 1:52 63.

- M _ 🗣 : - _ . Brain.
- 129:2562 2570. J _ JH, H JA, R A, L H, K 🕯 _ K. 2005. D -
- 9.
 - Magnetic Resonance in Medicine, 53:1432 1440.
- J H, PC, K J, P _ GD, M . 2006. D <u>9</u>
 - 9 . Computer Methods and Programs in Biomedicine. 81:106 116.
- MA, _ L , B _ MJ. 2014. M & _ S
 - 30 40 _ 9 9 . Neuroim-

M, J _ -B H, R & D, N & _ M, J . E, M & CE, KE, C & O, C M , M PM. 2006. 9 - 9 : = . Neuroimage. 31:1487 1505. , J -K, L -J, C AH, N AH. 2003. 9 . Neuroimage. 20:1714 1722. -K, - , R _ MJ, C C, R _ J, C _ _ AH. 2002. D MRI 💁) -(9 . Neuroimage. 17:1429 1436. -K, → J, L · Q, L · J, · · , C _ AH, A _ <u>a</u> . Neuroimage. 26:132 140. . Neuroimage. 26:132-140. K, K A, M MI, B ME, C DC. 2008. D ______. Cerebral Cortex. 18: 9 D, DH, 9 JJ, AK, H ND, R HD. 2005. C 9 9 <u>9</u> 9 . Proceedings of the National Academy of Sciences of the United States of America. 102:12212 12217. LM, L. 2007. § § A D 2. Journal of Child Psychology and Psychiatry. 48:793 802. E H, H DJ, MP, F , L H CA, H PJ, F B, B JK, O

- 94 / 94 : :

. Journal of the American Academy of Child &

J. 2014. D 9

Adolescent Psychiatry. 53:790. 793 799. 793.

,J H, N F ⊈ _ LM, PC, M Radiology. 230:77 87. L, G M, L A, B , P -C. 2012. D _ : <u>9</u> . Biological Psychiatry. 72:1043 1051. M, B - L, L ⊕ DA, I EB, A 9. R, E _ PM, H ., B _ DB. 2011. A -Human Brain Mapping. 32:534 543. L , KB, D AM, B A, D -P, E A, G H, CK, 2010. L - 94 (D. I) . Cerebral Cortex. 20:2055 2068. PI, L 💁 _ AR. 1967. . 919191 Α, . I : M Regional development of the brain in early life. O : B § , . 3 70. Q, 0 A, C L, J , C J, M_{-} , M, J 🖳 G, R N, L , H H. 2016. . Cerebral Cortex. 26:4381 4391. H, C M, L <u>a</u> a_ . Frontiers in Aging Neuroscience. 6:228.

-K

CA, A

. Neuroimage.

Н, 🧣

<u>9</u> 9

2012. NODDI:

61:1000 1016.